File: gdb.info, Node: Top, Next: Summary, Prev: (dir), Up: (dir)
Debugging with GDB
******************
This file describes GDB, the GNU symbolic debugger.
This is the Ninth Edition, for GDB Version 6.3.
Copyright (C) 1988-2004 Free Software Foundation, Inc.
* Menu:
* Summary:: Summary of GDB
* Sample Session:: A sample GDB session
* Invocation:: Getting in and out of GDB
* Commands:: GDB commands
* Running:: Running programs under GDB
* Stopping:: Stopping and continuing
* Stack:: Examining the stack
* Source:: Examining source files
* Data:: Examining data
* Macros:: Preprocessor Macros
* Tracepoints:: Debugging remote targets non-intrusively
* Overlays:: Debugging programs that use overlays
* Languages:: Using GDB with different languages
* Symbols:: Examining the symbol table
* Altering:: Altering execution
* GDB Files:: GDB files
* Targets:: Specifying a debugging target
* Remote Debugging:: Debugging remote programs
* Configurations:: Configuration-specific information
* Controlling GDB:: Controlling GDB
* Sequences:: Canned sequences of commands
* TUI:: GDB Text User Interface
* Interpreters:: Command Interpreters
* Emacs:: Using GDB under GNU Emacs
* Annotations:: GDB's annotation interface.
* GDB/MI:: GDB's Machine Interface.
* GDB Bugs:: Reporting bugs in GDB
* Formatting Documentation:: How to format and print GDB documentation
* Command Line Editing:: Command Line Editing
* Using History Interactively:: Using History Interactively
* Installing GDB:: Installing GDB
* Maintenance Commands:: Maintenance Commands
* Remote Protocol:: GDB Remote Serial Protocol
* Agent Expressions:: The GDB Agent Expression Mechanism
* Copying:: GNU General Public License says
how you can copy and share GDB
* GNU Free Documentation License:: The license for this documentation
* Index:: Index
File: gdb.info, Node: Summary, Next: Sample Session, Prev: Top, Up: Top
Summary of GDB
**************
The purpose of a debugger such as GDB is to allow you to see what is
going on "inside" another program while it executes--or what another
program was doing at the moment it crashed.
GDB can do four main kinds of things (plus other things in support of
these) to help you catch bugs in the act:
* Start your program, specifying anything that might affect its
behavior.
* Make your program stop on specified conditions.
* Examine what has happened, when your program has stopped.
* Change things in your program, so you can experiment with
correcting the effects of one bug and go on to learn about another.
You can use GDB to debug programs written in C and C++. For more
information, see *Note Supported languages: Support. For more
information, see *Note C and C++: C.
Support for Modula-2 is partial. For information on Modula-2, see
*Note Modula-2: Modula-2.
Debugging Pascal programs which use sets, subranges, file variables,
or nested functions does not currently work. GDB does not support
entering expressions, printing values, or similar features using Pascal
syntax.
GDB can be used to debug programs written in Fortran, although it
may be necessary to refer to some variables with a trailing underscore.
GDB can be used to debug programs written in Objective-C, using
either the Apple/NeXT or the GNU Objective-C runtime.
* Menu:
* Free Software:: Freely redistributable software
* Contributors:: Contributors to GDB
File: gdb.info, Node: Free Software, Next: Contributors, Up: Summary
Free software
=============
GDB is "free software", protected by the GNU General Public License
(GPL). The GPL gives you the freedom to copy or adapt a licensed
program--but every person getting a copy also gets with it the freedom
to modify that copy (which means that they must get access to the
source code), and the freedom to distribute further copies. Typical
software companies use copyrights to limit your freedoms; the Free
Software Foundation uses the GPL to preserve these freedoms.
Fundamentally, the General Public License is a license which says
that you have these freedoms and that you cannot take these freedoms
away from anyone else.
Free Software Needs Free Documentation
======================================
The biggest deficiency in the free software community today is not in
the software--it is the lack of good free documentation that we can
include with the free software. Many of our most important programs do
not come with free reference manuals and free introductory texts.
Documentation is an essential part of any software package; when an
important free software package does not come with a free manual and a
free tutorial, that is a major gap. We have many such gaps today.
Consider Perl, for instance. The tutorial manuals that people
normally use are non-free. How did this come about? Because the
authors of those manuals published them with restrictive terms--no
copying, no modification, source files not available--which exclude
them from the free software world.
That wasn't the first time this sort of thing happened, and it was
far from the last. Many times we have heard a GNU user eagerly
describe a manual that he is writing, his intended contribution to the
community, only to learn that he had ruined everything by signing a
publication contract to make it non-free.
Free documentation, like free software, is a matter of freedom, not
price. The problem with the non-free manual is not that publishers
charge a price for printed copies--that in itself is fine. (The Free
Software Foundation sells printed copies of manuals, too.) The problem
is the restrictions on the use of the manual. Free manuals are
available in source code form, and give you permission to copy and
modify. Non-free manuals do not allow this.
The criteria of freedom for a free manual are roughly the same as for
free software. Redistribution (including the normal kinds of
commercial redistribution) must be permitted, so that the manual can
accompany every copy of the program, both on-line and on paper.
Permission for modification of the technical content is crucial too.
When people modify the software, adding or changing features, if they
are conscientious they will change the manual too--so they can provide
accurate and clear documentation for the modified program. A manual
that leaves you no choice but to write a new manual to document a
changed version of the program is not really available to our community.
Some kinds of limits on the way modification is handled are
acceptable. For example, requirements to preserve the original
author's copyright notice, the distribution terms, or the list of
authors, are ok. It is also no problem to require modified versions to
include notice that they were modified. Even entire sections that may
not be deleted or changed are acceptable, as long as they deal with
nontechnical topics (like this one). These kinds of restrictions are
acceptable because they don't obstruct the community's normal use of
the manual.
However, it must be possible to modify all the _technical_ content
of the manual, and then distribute the result in all the usual media,
through all the usual channels. Otherwise, the restrictions obstruct
the use of the manual, it is not free, and we need another manual to
replace it.
Please spread the word about this issue. Our community continues to
lose manuals to proprietary publishing. If we spread the word that
free software needs free reference manuals and free tutorials, perhaps
the next person who wants to contribute by writing documentation will
realize, before it is too late, that only free manuals contribute to
the free software community.
If you are writing documentation, please insist on publishing it
under the GNU Free Documentation License or another free documentation
license. Remember that this decision requires your approval--you don't
have to let the publisher decide. Some commercial publishers will use
a free license if you insist, but they will not propose the option; it
is up to you to raise the issue and say firmly that this is what you
want. If the publisher you are dealing with refuses, please try other
publishers. If you're not sure whether a proposed license is free,
write to <>.
You can encourage commercial publishers to sell more free, copylefted
manuals and tutorials by buying them, and particularly by buying copies
from the publishers that paid for their writing or for major
improvements. Meanwhile, try to avoid buying non-free documentation at
all. Check the distribution terms of a manual before you buy it, and
insist that whoever seeks your business must respect your freedom.
Check the history of the book, and try to reward the publishers that
have paid or pay the authors to work on it.
The Free Software Foundation maintains a list of free documentation
published by other publishers, at
`http://www.fsf.org/doc/other-free-books.html'.
File: gdb.info, Node: Contributors, Prev: Free Software, Up: Summary
Contributors to GDB
===================
Richard Stallman was the original author of GDB, and of many other GNU
programs. Many others have contributed to its development. This
section attempts to credit major contributors. One of the virtues of
free software is that everyone is free to contribute to it; with
regret, we cannot actually acknowledge everyone here. The file
`ChangeLog' in the GDB distribution approximates a blow-by-blow account.
Changes much prior to version 2.0 are lost in the mists of time.
_Plea:_ Additions to this section are particularly welcome. If you
or your friends (or enemies, to be evenhanded) have been unfairly
omitted from this list, we would like to add your names!
So that they may not regard their many labors as thankless, we
particularly thank those who shepherded GDB through major releases:
Andrew Cagney (releases 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0); Jim Blandy
(release 4.18); Jason Molenda (release 4.17); Stan Shebs (release 4.14);
Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9); Stu
Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4); John
Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9); Jim Kingdon (releases
3.5, 3.4, and 3.3); and Randy Smith (releases 3.2, 3.1, and 3.0).
Richard Stallman, assisted at various times by Peter TerMaat, Chris
Hanson, and Richard Mlynarik, handled releases through 2.8.
Michael Tiemann is the author of most of the GNU C++ support in GDB,
with significant additional contributions from Per Bothner and Daniel
Berlin. James Clark wrote the GNU C++ demangler. Early work on C++
was by Peter TerMaat (who also did much general update work leading to
release 3.0).
GDB uses the BFD subroutine library to examine multiple object-file
formats; BFD was a joint project of David V. Henkel-Wallace, Rich
Pixley, Steve Chamberlain, and John Gilmore.
David Johnson wrote the original COFF support; Pace Willison did the
original support for encapsulated COFF.
Brent Benson of Harris Computer Systems contributed DWARF 2 support.
Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
support. Jean-Daniel Fekete contributed Sun 386i support. Chris
Hanson improved the HP9000 support. Noboyuki Hikichi and Tomoyuki
Hasei contributed Sony/News OS 3 support. David Johnson contributed
Encore Umax support. Jyrki Kuoppala contributed Altos 3068 support.
Jeff Law contributed HP PA and SOM support. Keith Packard contributed
NS32K support. Doug Rabson contributed Acorn Risc Machine support.
Bob Rusk contributed Harris Nighthawk CX-UX support. Chris Smith
contributed Convex support (and Fortran debugging). Jonathan Stone
contributed Pyramid support. Michael Tiemann contributed SPARC support.
Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
Pace Willison contributed Intel 386 support. Jay Vosburgh contributed
Symmetry support. Marko Mlinar contributed OpenRISC 1000 support.
Andreas Schwab contributed M68K GNU/Linux support.
Rich Schaefer and Peter Schauer helped with support of SunOS shared
libraries.
Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about
several machine instruction sets.
Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped
develop remote debugging. Intel Corporation, Wind River Systems, AMD,
and ARM contributed remote debugging modules for the i960, VxWorks,
A29K UDI, and RDI targets, respectively.
Brian Fox is the author of the readline libraries providing
command-line editing and command history.
Andrew Beers of SUNY Buffalo wrote the language-switching code, the
Modula-2 support, and contributed the Languages chapter of this manual.
Fred Fish wrote most of the support for Unix System Vr4. He also
enhanced the command-completion support to cover C++ overloaded symbols.
Hitachi America (now Renesas America), Ltd. sponsored the support for
H8/300, H8/500, and Super-H processors.
NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx
processors.
Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and
M32R/D processors.
Toshiba sponsored the support for the TX39 Mips processor.
Matsushita sponsored the support for the MN10200 and MN10300
processors.
Fujitsu sponsored the support for SPARClite and FR30 processors.
Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
watchpoints.
Michael Snyder added support for tracepoints.
Stu Grossman wrote gdbserver.
Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made nearly
innumerable bug fixes and cleanups throughout GDB.
The following people at the Hewlett-Packard Company contributed
support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
(narrow mode), HP's implementation of kernel threads, HP's aC++
compiler, and the Text User Interface (nee Terminal User Interface):
Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
provided HP-specific information in this manual.
DJ Delorie ported GDB to MS-DOS, for the DJGPP project. Robert
Hoehne made significant contributions to the DJGPP port.
Cygnus Solutions has sponsored GDB maintenance and much of its
development since 1991. Cygnus engineers who have worked on GDB
fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
Zuhn have made contributions both large and small.
Jim Blandy added support for preprocessor macros, while working for
Red Hat.
File: gdb.info, Node: Sample Session, Next: Invocation, Prev: Summary, Up: Top
1 A Sample GDB Session
**********************
You can use this manual at your leisure to read all about GDB.
However, a handful of commands are enough to get started using the
debugger. This chapter illustrates those commands.
One of the preliminary versions of GNU `m4' (a generic macro
processor) exhibits the following bug: sometimes, when we change its
quote strings from the default, the commands used to capture one macro
definition within another stop working. In the following short `m4'
session, we define a macro `foo' which expands to `0000'; we then use
the `m4' built-in `defn' to define `bar' as the same thing. However,
when we change the open quote string to `' and the close quote
string to `', the same procedure fails to define a new synonym
`baz':
$ cd gnu/m4
$ ./m4
define(foo,0000)
foo
0000
define(bar,defn(`foo'))
bar
0000
changequote(,)
define(baz,defn(foo))
baz
C-d
m4: End of input: 0: fatal error: EOF in string
Let us use GDB to try to see what is going on.
$ gdb m4
GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.
There is absolutely no warranty for GDB; type "show warranty"
for details.
GDB 6.3, Copyright 1999 Free Software Foundation, Inc...
(gdb)
GDB reads only enough symbol data to know where to find the rest when
needed; as a result, the first prompt comes up very quickly. We now
tell GDB to use a narrower display width than usual, so that examples
fit in this manual.
(gdb) set width 70
We need to see how the `m4' built-in `changequote' works. Having
looked at the source, we know the relevant subroutine is
`m4_changequote', so we set a breakpoint there with the GDB `break'
command.
(gdb) break m4_changequote
Breakpoint 1 at 0x62f4: file builtin.c, line 879.
Using the `run' command, we start `m4' running under GDB control; as
long as control does not reach the `m4_changequote' subroutine, the
program runs as usual:
(gdb) run
Starting program: /work/Editorial/gdb/gnu/m4/m4
define(foo,0000)
foo
0000
To trigger the breakpoint, we call `changequote'. GDB suspends
execution of `m4', displaying information about the context where it
stops.
changequote(,)
Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
at builtin.c:879
879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
Now we use the command `n' (`next') to advance execution to the next
line of the current function.
(gdb) n
882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
: nil,
`set_quotes' looks like a promising subroutine. We can go into it by
using the command `s' (`step') instead of `next'. `step' goes to the
next line to be executed in _any_ subroutine, so it steps into
`set_quotes'.
(gdb) s
set_quotes (lq=0x34c78 "", rq=0x34c88 "")
at input.c:530
530 if (lquote != def_lquote)
The display that shows the subroutine where `m4' is now suspended (and
its arguments) is called a stack frame display. It shows a summary of
the stack. We can use the `backtrace' command (which can also be
spelled `bt'), to see where we are in the stack as a whole: the
`backtrace' command displays a stack frame for each active subroutine.
(gdb) bt
#0 set_quotes (lq=0x34c78 "", rq=0x34c88 "")
at input.c:530
#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
at builtin.c:882
#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
at macro.c:71
#4 0x79dc in expand_input () at macro.c:40
#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
We step through a few more lines to see what happens. The first two
times, we can use `s'; the next two times we use `n' to avoid falling
into the `xstrdup' subroutine.
(gdb) s
0x3b5c 532 if (rquote != def_rquote)
(gdb) s
0x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
def_lquote : xstrdup(lq);
(gdb) n
536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
: xstrdup(rq);
(gdb) n
538 len_lquote = strlen(rquote);
The last line displayed looks a little odd; we can examine the variables
`lquote' and `rquote' to see if they are in fact the new left and right
quotes we specified. We use the command `p' (`print') to see their
values.
(gdb) p lquote
$1 = 0x35d40 ""
(gdb) p rquote
$2 = 0x35d50 ""
`lquote' and `rquote' are indeed the new left and right quotes. To
look at some context, we can display ten lines of source surrounding
the current line with the `l' (`list') command.
(gdb) l
533 xfree(rquote);
534
535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
: xstrdup (lq);
536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
: xstrdup (rq);
537
538 len_lquote = strlen(rquote);
539 len_rquote = strlen(lquote);
540 }
541
542 void
Let us step past the two lines that set `len_lquote' and `len_rquote',
and then examine the values of those variables.
(gdb) n
539 len_rquote = strlen(lquote);
(gdb) n
540 }
(gdb) p len_lquote
$3 = 9
(gdb) p len_rquote
$4 = 7
That certainly looks wrong, assuming `len_lquote' and `len_rquote' are
meant to be the lengths of `lquote' and `rquote' respectively. We can
set them to better values using the `p' command, since it can print the
value of any expression--and that expression can include subroutine
calls and assignments.
(gdb) p len_lquote=strlen(lquote)
$5 = 7
(gdb) p len_rquote=strlen(rquote)
$6 = 9
Is that enough to fix the problem of using the new quotes with the `m4'
built-in `defn'? We can allow `m4' to continue executing with the `c'
(`continue') command, and then try the example that caused trouble
initially:
(gdb) c
Continuing.
define(baz,defn(foo))
baz
0000
Success! The new quotes now work just as well as the default ones. The
problem seems to have been just the two typos defining the wrong
lengths. We allow `m4' exit by giving it an EOF as input:
C-d
Program exited normally.
The message `Program exited normally.' is from GDB; it indicates `m4'
has finished executing. We can end our GDB session with the GDB `quit'
command.
(gdb) quit
File: gdb.info, Node: Invocation, Next: Commands, Prev: Sample Session, Up: Top
2 Getting In and Out of GDB
***************************
This chapter discusses how to start GDB, and how to get out of it. The
essentials are:
* type `gdb' to start GDB.
* type `quit' or `C-d' to exit.
* Menu:
* Invoking GDB:: How to start GDB
* Quitting GDB:: How to quit GDB
* Shell Commands:: How to use shell commands inside GDB
* Logging output:: How to log GDB's output to a file
File: gdb.info, Node: Invoking GDB, Next: Quitting GDB, Up: Invocation
2.1 Invoking GDB
================
Invoke GDB by running the program `gdb'. Once started, GDB reads
commands from the terminal until you tell it to exit.
You can also run `gdb' with a variety of arguments and options, to
specify more of your debugging environment at the outset.
The command-line options described here are designed to cover a
variety of situations; in some environments, some of these options may
effectively be unavailable.
The most usual way to start GDB is with one argument, specifying an
executable program:
gdb PROGRAM
You can also start with both an executable program and a core file
specified:
gdb PROGRAM CORE
You can, instead, specify a process ID as a second argument, if you
want to debug a running process:
gdb PROGRAM 1234
would attach GDB to process `1234' (unless you also have a file named
`1234'; GDB does check for a core file first).
Taking advantage of the second command-line argument requires a
fairly complete operating system; when you use GDB as a remote debugger
attached to a bare board, there may not be any notion of "process", and
there is often no way to get a core dump. GDB will warn you if it is
unable to attach or to read core dumps.
You can optionally have `gdb' pass any arguments after the
executable file to the inferior using `--args'. This option stops
option processing.
gdb --args gcc -O2 -c foo.c
This will cause `gdb' to debug `gcc', and to set `gcc''s
command-line arguments (*note Arguments::) to `-O2 -c foo.c'.
You can run `gdb' without printing the front material, which
describes GDB's non-warranty, by specifying `-silent':
gdb -silent
You can further control how GDB starts up by using command-line
options. GDB itself can remind you of the options available.
Type
gdb -help
to display all available options and briefly describe their use (`gdb
-h' is a shorter equivalent).
All options and command line arguments you give are processed in
sequential order. The order makes a difference when the `-x' option is
used.
* Menu:
* File Options:: Choosing files
* Mode Options:: Choosing modes
File: gdb.info, Node: File Options, Next: Mode Options, Up: Invoking GDB
2.1.1 Choosing files
--------------------
When GDB starts, it reads any arguments other than options as
specifying an executable file and core file (or process ID). This is
the same as if the arguments were specified by the `-se' and `-c' (or
`-p' options respectively. (GDB reads the first argument that does not
have an associated option flag as equivalent to the `-se' option
followed by that argument; and the second argument that does not have
an associated option flag, if any, as equivalent to the `-c'/`-p'
option followed by that argument.) If the second argument begins with
a decimal digit, GDB will first attempt to attach to it as a process,
and if that fails, attempt to open it as a corefile. If you have a
corefile whose name begins with a digit, you can prevent GDB from
treating it as a pid by prefixing it with `./', eg. `./12345'.
If GDB has not been configured to included core file support, such
as for most embedded targets, then it will complain about a second
argument and ignore it.
Many options have both long and short forms; both are shown in the
following list. GDB also recognizes the long forms if you truncate
them, so long as enough of the option is present to be unambiguous.
(If you prefer, you can flag option arguments with `--' rather than
`-', though we illustrate the more usual convention.)
`-symbols FILE'
`-s FILE'
Read symbol table from file FILE.
`-exec FILE'
`-e FILE'
Use file FILE as the executable file to execute when appropriate,
and for examining pure data in conjunction with a core dump.
`-se FILE'
Read symbol table from file FILE and use it as the executable file.
`-core FILE'
`-c FILE'
Use file FILE as a core dump to examine.
`-c NUMBER'
`-pid NUMBER'
`-p NUMBER'
Connect to process ID NUMBER, as with the `attach' command. If
there is no such process, GDB will attempt to open a core file
named NUMBER.
`-command FILE'
`-x FILE'
Execute GDB commands from file FILE. *Note Command files: Command
Files.
`-directory DIRECTORY'
`-d DIRECTORY'
Add DIRECTORY to the path to search for source files.
`-m'
`-mapped'
_Warning: this option depends on operating system facilities that
are not supported on all systems._
If memory-mapped files are available on your system through the
`mmap' system call, you can use this option to have GDB write the
symbols from your program into a reusable file in the current
directory. If the program you are debugging is called
`/tmp/fred', the mapped symbol file is `/tmp/fred.syms'. Future
GDB debugging sessions notice the presence of this file, and can
quickly map in symbol information from it, rather than reading the
symbol table from the executable program.
The `.syms' file is specific to the host machine where GDB is run.
It holds an exact image of the internal GDB symbol table. It
cannot be shared across multiple host platforms.
`-r'
`-readnow'
Read each symbol file's entire symbol table immediately, rather
than the default, which is to read it incrementally as it is
needed. This makes startup slower, but makes future operations
faster.
`--readnever'
Do not read each symbol file's symbolic debug information. This
makes startup faster but at the expense of not being able to
perform symbolic debugging.
You typically combine the `-mapped' and `-readnow' options in order
to build a `.syms' file that contains complete symbol information.
(*Note Commands to specify files: Files, for information on `.syms'
files.) A simple GDB invocation to do nothing but build a `.syms' file
for future use is:
gdb -batch -nx -mapped -readnow programname
File: gdb.info, Node: Mode Options, Prev: File Options, Up: Invoking GDB
2.1.2 Choosing modes
--------------------
You can run GDB in various alternative modes--for example, in batch
mode or quiet mode.
`-nx'
`-n'
Do not execute commands found in any initialization files.
Normally, GDB executes the commands in these files after all the
command options and arguments have been processed. *Note Command
files: Command Files.
`-quiet'
`-silent'
`-q'
"Quiet". Do not print the introductory and copyright messages.
These messages are also suppressed in batch mode.
`-batch'
Run in batch mode. Exit with status `0' after processing all the
command files specified with `-x' (and all commands from
initialization files, if not inhibited with `-n'). Exit with
nonzero status if an error occurs in executing the GDB commands in
the command files.
Batch mode may be useful for running GDB as a filter, for example
to download and run a program on another computer; in order to
make this more useful, the message
Program exited normally.
(which is ordinarily issued whenever a program running under GDB
control terminates) is not issued when running in batch mode.
`-nowindows'
`-nw'
"No windows". If GDB comes with a graphical user interface (GUI)
built in, then this option tells GDB to only use the command-line
interface. If no GUI is available, this option has no effect.
`-windows'
`-w'
If GDB includes a GUI, then this option requires it to be used if
possible.
`-cd DIRECTORY'
Run GDB using DIRECTORY as its working directory, instead of the
current directory.
`-fullname'
`-f'
GNU Emacs sets this option when it runs GDB as a subprocess. It
tells GDB to output the full file name and line number in a
standard, recognizable fashion each time a stack frame is
displayed (which includes each time your program stops). This
recognizable format looks like two `\032' characters, followed by
the file name, line number and character position separated by
colons, and a newline. The Emacs-to-GDB interface program uses
the two `\032' characters as a signal to display the source code
for the frame.
`-epoch'
The Epoch Emacs-GDB interface sets this option when it runs GDB as
a subprocess. It tells GDB to modify its print routines so as to
allow Epoch to display values of expressions in a separate window.
`-annotate LEVEL'
This option sets the "annotation level" inside GDB. Its effect is
identical to using `set annotate LEVEL' (*note Annotations::).
The annotation LEVEL controls how much information GDB prints
together with its prompt, values of expressions, source lines, and
other types of output. Level 0 is the normal, level 1 is for use
when GDB is run as a subprocess of GNU Emacs, level 3 is the
maximum annotation suitable for programs that control GDB, and
level 2 has been deprecated.
The annotation mechanism has largely been superseeded by GDB/MI
(*note GDB/MI::).
`--args'
Change interpretation of command line so that arguments following
the executable file are passed as command line arguments to the
inferior. This option stops option processing.
`-baud BPS'
`-b BPS'
Set the line speed (baud rate or bits per second) of any serial
interface used by GDB for remote debugging.
`-tty DEVICE'
`-t DEVICE'
Run using DEVICE for your program's standard input and output.
`-tui'
Activate the "Text User Interface" when starting. The Text User
Interface manages several text windows on the terminal, showing
source, assembly, registers and GDB command outputs (*note GDB
Text User Interface: TUI.). Alternatively, the Text User
Interface can be enabled by invoking the program `gdbtui'. Do not
use this option if you run GDB from Emacs (*note Using GDB under
GNU Emacs: Emacs.).
`-interpreter INTERP'
Use the interpreter INTERP for interface with the controlling
program or device. This option is meant to be set by programs
which communicate with GDB using it as a back end. *Note Command
Interpreters: Interpreters.
`--interpreter=mi' (or `--interpreter=mi2') causes GDB to use the
"GDB/MI interface" (*note The GDB/MI Interface: GDB/MI.) included
since GDBN version 6.0. The previous GDB/MI interface, included
in GDB version 5.3 and selected with `--interpreter=mi1', is
deprecated. Earlier GDB/MI interfaces are no longer supported.
`-write'
Open the executable and core files for both reading and writing.
This is equivalent to the `set write on' command inside GDB (*note
Patching::).
`-statistics'
This option causes GDB to print statistics about time and memory
usage after it completes each command and returns to the prompt.
`-version'
This option causes GDB to print its version number and no-warranty
blurb, and exit.
File: gdb.info, Node: Quitting GDB, Next: Shell Commands, Prev: Invoking GDB, Up: Invocation
2.2 Quitting GDB
================
`quit [EXPRESSION]'
`q'
To exit GDB, use the `quit' command (abbreviated `q'), or type an
end-of-file character (usually `C-d'). If you do not supply
EXPRESSION, GDB will terminate normally; otherwise it will
terminate using the result of EXPRESSION as the error code.
An interrupt (often `C-c') does not exit from GDB, but rather
terminates the action of any GDB command that is in progress and
returns to GDB command level. It is safe to type the interrupt
character at any time because GDB does not allow it to take effect
until a time when it is safe.
If you have been using GDB to control an attached process or device,
you can release it with the `detach' command (*note Debugging an
already-running process: Attach.).
File: gdb.info, Node: Shell Commands, Next: Logging output, Prev: Quitting GDB, Up: Invocation
2.3 Shell commands
==================
If you need to execute occasional shell commands during your debugging
session, there is no need to leave or suspend GDB; you can just use the
`shell' command.
`shell COMMAND STRING'
Invoke a standard shell to execute COMMAND STRING. If it exists,
the environment variable `SHELL' determines which shell to run.
Otherwise GDB uses the default shell (`/bin/sh' on Unix systems,
`COMMAND.COM' on MS-DOS, etc.).
The utility `make' is often needed in development environments. You
do not have to use the `shell' command for this purpose in GDB:
`make MAKE-ARGS'
Execute the `make' program with the specified arguments. This is
equivalent to `shell make MAKE-ARGS'.
File: gdb.info, Node: Logging output, Prev: Shell Commands, Up: Invocation
2.4 Logging output
==================
You may want to save the output of GDB commands to a file. There are
several commands to control GDB's logging.
`set logging on'
Enable logging.
`set logging off'
Disable logging.
`set logging file FILE'
Change the name of the current logfile. The default logfile is
`gdb.txt'.
`set logging overwrite [on|off]'
By default, GDB will append to the logfile. Set `overwrite' if
you want `set logging on' to overwrite the logfile instead.
`set logging redirect [on|off]'
By default, GDB output will go to both the terminal and the
logfile. Set `redirect' if you want output to go only to the log
file.
`show logging'
Show the current values of the logging settings.
File: gdb.info, Node: Commands, Next: Running, Prev: Invocation, Up: Top
3 GDB Commands
**************
You can abbreviate a GDB command to the first few letters of the command
name, if that abbreviation is unambiguous; and you can repeat certain
GDB commands by typing just . You can also use the key to
get GDB to fill out the rest of a word in a command (or to show you the
alternatives available, if there is more than one possibility).
* Menu:
* Command Syntax:: How to give commands to GDB
* Completion:: Command completion
* Help:: How to ask GDB for help
File: gdb.info, Node: Command Syntax, Next: Completion, Up: Commands
3.1 Command syntax
==================
A GDB command is a single line of input. There is no limit on how long
it can be. It starts with a command name, which is followed by
arguments whose meaning depends on the command name. For example, the
command `step' accepts an argument which is the number of times to
step, as in `step 5'. You can also use the `step' command with no
arguments. Some commands do not allow any arguments.
GDB command names may always be truncated if that abbreviation is
unambiguous. Other possible command abbreviations are listed in the
documentation for individual commands. In some cases, even ambiguous
abbreviations are allowed; for example, `s' is specially defined as
equivalent to `step' even though there are other commands whose names
start with `s'. You can test abbreviations by using them as arguments
to the `help' command.
A blank line as input to GDB (typing just ) means to repeat the
previous command. Certain commands (for example, `run') will not
repeat this way; these are commands whose unintentional repetition
might cause trouble and which you are unlikely to want to repeat.
The `list' and `x' commands, when you repeat them with ,
construct new arguments rather than repeating exactly as typed. This
permits easy scanning of source or memory.
GDB can also use in another way: to partition lengthy output,
in a way similar to the common utility `more' (*note Screen size:
Screen Size.). Since it is easy to press one too many in this
situation, GDB disables command repetition after any command that
generates this sort of display.
Any text from a `#' to the end of the line is a comment; it does
nothing. This is useful mainly in command files (*note Command files:
Command Files.).
The `C-o' binding is useful for repeating a complex sequence of
commands. This command accepts the current line, like `RET', and then
fetches the next line relative to the current line from the history for
editing.
File: gdb.info, Node: Completion, Next: Help, Prev: Command Syntax, Up: Commands
3.2 Command completion
======================
GDB can fill in the rest of a word in a command for you, if there is
only one possibility; it can also show you what the valid possibilities
are for the next word in a command, at any time. This works for GDB
commands, GDB subcommands, and the names of symbols in your program.
Press the key whenever you want GDB to fill out the rest of a
word. If there is only one possibility, GDB fills in the word, and
waits for you to finish the command (or press to enter it). For
example, if you type
(gdb) info bre
GDB fills in the rest of the word `breakpoints', since that is the only
`info' subcommand beginning with `bre':
(gdb) info breakpoints
You can either press at this point, to run the `info breakpoints'
command, or backspace and enter something else, if `breakpoints' does
not look like the command you expected. (If you were sure you wanted
`info breakpoints' in the first place, you might as well just type
immediately after `info bre', to exploit command abbreviations
rather than command completion).
If there is more than one possibility for the next word when you
press , GDB sounds a bell. You can either supply more characters
and try again, or just press a second time; GDB displays all the
possible completions for that word. For example, you might want to set
a breakpoint on a subroutine whose name begins with `make_', but when
you type `b make_' GDB just sounds the bell. Typing again
displays all the function names in your program that begin with those
characters, for example:
(gdb) b make_
GDB sounds bell; press again, to see:
make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list
(gdb) b make_
After displaying the available possibilities, GDB copies your partial
input (`b make_' in the example) so you can finish the command.
If you just want to see the list of alternatives in the first place,
you can press `M-?' rather than pressing twice. `M-?' means
` ?'. You can type this either by holding down a key designated
as the shift on your keyboard (if there is one) while typing
`?', or as followed by `?'.
Sometimes the string you need, while logically a "word", may contain
parentheses or other characters that GDB normally excludes from its
notion of a word. To permit word completion to work in this situation,
you may enclose words in `'' (single quote marks) in GDB commands.
The most likely situation where you might need this is in typing the
name of a C++ function. This is because C++ allows function
overloading (multiple definitions of the same function, distinguished
by argument type). For example, when you want to set a breakpoint you
may need to distinguish whether you mean the version of `name' that
takes an `int' parameter, `name(int)', or the version that takes a
`float' parameter, `name(float)'. To use the word-completion
facilities in this situation, type a single quote `'' at the beginning
of the function name. This alerts GDB that it may need to consider
more information than usual when you press or `M-?' to request
word completion:
(gdb) b 'bubble( M-?
bubble(double,double) bubble(int,int)
(gdb) b 'bubble(
In some cases, GDB can tell that completing a name requires using
quotes. When this happens, GDB inserts the quote for you (while
completing as much as it can) if you do not type the quote in the first
place:
(gdb) b bub
GDB alters your input line to the following, and rings a bell:
(gdb) b 'bubble(
In general, GDB can tell that a quote is needed (and inserts it) if you
have not yet started typing the argument list when you ask for
completion on an overloaded symbol.
For more information about overloaded functions, see *Note C++
expressions: C plus plus expressions. You can use the command `set
overload-resolution off' to disable overload resolution; see *Note GDB
features for C++: Debugging C plus plus.
File: gdb.info, Node: Help, Prev: Completion, Up: Commands
3.3 Getting help
================
You can always ask GDB itself for information on its commands, using
the command `help'.
`help'
`h'
You can use `help' (abbreviated `h') with no arguments to display
a short list of named classes of commands:
(gdb) help
List of classes of commands:
aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without
stopping the program
user-defined -- User-defined commands
Type "help" followed by a class name for a list of
commands in that class.
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)
`help CLASS'
Using one of the general help classes as an argument, you can get a
list of the individual commands in that class. For example, here
is the help display for the class `status':
(gdb) help status
Status inquiries.
List of commands:
info -- Generic command for showing things
about the program being debugged
show -- Generic command for showing things
about the debugger
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)
`help COMMAND'
With a command name as `help' argument, GDB displays a short
paragraph on how to use that command.
`apropos ARGS'
The `apropos ARGS' command searches through all of the GDB
commands, and their documentation, for the regular expression
specified in ARGS. It prints out all matches found. For example:
apropos reload
results in:
set symbol-reloading -- Set dynamic symbol table reloading
multiple times in one run
show symbol-reloading -- Show dynamic symbol table reloading
multiple times in one run
`complete ARGS'
The `complete ARGS' command lists all the possible completions for
the beginning of a command. Use ARGS to specify the beginning of
the command you want completed. For example:
complete i
results in:
if
ignore
info
inspect
This is intended for use by GNU Emacs.
In addition to `help', you can use the GDB commands `info' and
`show' to inquire about the state of your program, or the state of GDB
itself. Each command supports many topics of inquiry; this manual
introduces each of them in the appropriate context. The listings under
`info' and under `show' in the Index point to all the sub-commands.
*Note Index::.
`info'
This command (abbreviated `i') is for describing the state of your
program. For example, you can list the arguments given to your
program with `info args', list the registers currently in use with
`info registers', or list the breakpoints you have set with `info
breakpoints'. You can get a complete list of the `info'
sub-commands with `help info'.
`set'
You can assign the result of an expression to an environment
variable with `set'. For example, you can set the GDB prompt to a
$-sign with `set prompt $'.
`show'
In contrast to `info', `show' is for describing the state of GDB
itself. You can change most of the things you can `show', by
using the related command `set'; for example, you can control what
number system is used for displays with `set radix', or simply
inquire which is currently in use with `show radix'.
To display all the settable parameters and their current values,
you can use `show' with no arguments; you may also use `info set'.
Both commands produce the same display.
Here are three miscellaneous `show' subcommands, all of which are
exceptional in lacking corresponding `set' commands:
`show version'
Show what version of GDB is running. You should include this
information in GDB bug-reports. If multiple versions of GDB are
in use at your site, you may need to determine which version of
GDB you are running; as GDB evolves, new commands are introduced,
and old ones may wither away. Also, many system vendors ship
variant versions of GDB, and there are variant versions of GDB in
GNU/Linux distributions as well. The version number is the same
as the one announced when you start GDB.
`show copying'
Display information about permission for copying GDB.
`show warranty'
Display the GNU "NO WARRANTY" statement, or a warranty, if your
version of GDB comes with one.
File: gdb.info, Node: Running, Next: Stopping, Prev: Commands, Up: Top
4 Running Programs Under GDB
****************************
When you run a program under GDB, you must first generate debugging
information when you compile it.
You may start GDB with its arguments, if any, in an environment of
your choice. If you are doing native debugging, you may redirect your
program's input and output, debug an already running process, or kill a
child process.
* Menu:
* Compilation:: Compiling for debugging
* Starting:: Starting your program
* Arguments:: Your program's arguments
* Environment:: Your program's environment
* Working Directory:: Your program's working directory
* Input/Output:: Your program's input and output
* Attach:: Debugging an already-running process
* Kill Process:: Killing the child process
* Threads:: Debugging programs with multiple threads
* Processes:: Debugging programs with multiple processes
File: gdb.info, Node: Compilation, Next: Starting, Up: Running
4.1 Compiling for debugging
===========================
In order to debug a program effectively, you need to generate debugging
information when you compile it. This debugging information is stored
in the object file; it describes the data type of each variable or
function and the correspondence between source line numbers and
addresses in the executable code.
To request debugging information, specify the `-g' option when you
run the compiler.
Most compilers do not include information about preprocessor macros
in the debugging information if you specify the `-g' flag alone,
because this information is rather large. Version 3.1 of GCC, the GNU
C compiler, provides macro information if you specify the options
`-gdwarf-2' and `-g3'; the former option requests debugging information
in the Dwarf 2 format, and the latter requests "extra information". In
the future, we hope to find more compact ways to represent macro
information, so that it can be included with `-g' alone.
Many C compilers are unable to handle the `-g' and `-O' options
together. Using those compilers, you cannot generate optimized
executables containing debugging information.
GCC, the GNU C compiler, supports `-g' with or without `-O', making
it possible to debug optimized code. We recommend that you _always_
use `-g' whenever you compile a program. You may think your program is
correct, but there is no sense in pushing your luck.
When you debug a program compiled with `-g -O', remember that the
optimizer is rearranging your code; the debugger shows you what is
really there. Do not be too surprised when the execution path does not
exactly match your source file! An extreme example: if you define a
variable, but never use it, GDB never sees that variable--because the
compiler optimizes it out of existence.
Some things do not work as well with `-g -O' as with just `-g',
particularly on machines with instruction scheduling. If in doubt,
recompile with `-g' alone, and if this fixes the problem, please report
it to us as a bug (including a test case!). *Note Variables::, for
more information about debugging optimized code.
Older versions of the GNU C compiler permitted a variant option
`-gg' for debugging information. GDB no longer supports this format;
if your GNU C compiler has this option, do not use it.
File: gdb.info, Node: Starting, Next: Arguments, Prev: Compilation, Up: Running
4.2 Starting your program
=========================
`run'
`r'
Use the `run' command to start your program under GDB. You must
first specify the program name (except on VxWorks) with an
argument to GDB (*note Getting In and Out of GDB: Invocation.), or
by using the `file' or `exec-file' command (*note Commands to
specify files: Files.).
If you are running your program in an execution environment that
supports processes, `run' creates an inferior process and makes that
process run your program. (In environments without processes, `run'
jumps to the start of your program.)
The execution of a program is affected by certain information it
receives from its superior. GDB provides ways to specify this
information, which you must do _before_ starting your program. (You
can change it after starting your program, but such changes only affect
your program the next time you start it.) This information may be
divided into four categories:
The _arguments._
Specify the arguments to give your program as the arguments of the
`run' command. If a shell is available on your target, the shell
is used to pass the arguments, so that you may use normal
conventions (such as wildcard expansion or variable substitution)
in describing the arguments. In Unix systems, you can control
which shell is used with the `SHELL' environment variable. *Note
Your program's arguments: Arguments.
The _environment._
Your program normally inherits its environment from GDB, but you
can use the GDB commands `set environment' and `unset environment'
to change parts of the environment that affect your program.
*Note Your program's environment: Environment.
The _working directory._
Your program inherits its working directory from GDB. You can set
the GDB working directory with the `cd' command in GDB. *Note
Your program's working directory: Working Directory.
The _standard input and output._
Your program normally uses the same device for standard input and
standard output as GDB is using. You can redirect input and output
in the `run' command line, or you can use the `tty' command to set
a different device for your program. *Note Your program's input
and output: Input/Output.
_Warning:_ While input and output redirection work, you cannot use
pipes to pass the output of the program you are debugging to
another program; if you attempt this, GDB is likely to wind up
debugging the wrong program.
When you issue the `run' command, your program begins to execute
immediately. *Note Stopping and continuing: Stopping, for discussion
of how to arrange for your program to stop. Once your program has
stopped, you may call functions in your program, using the `print' or
`call' commands. *Note Examining Data: Data.
If the modification time of your symbol file has changed since the
last time GDB read its symbols, GDB discards its symbol table, and
reads it again. When it does this, GDB tries to retain your current
breakpoints.
`start'
The name of the main procedure can vary from language to language.
With C or C++, the main procedure name is always `main', but other
languages such as Ada do not require a specific name for their
main procedure. The debugger provides a convenient way to start
the execution of the program and to stop at the beginning of the
main procedure, depending on the language used.
The `start' command does the equivalent of setting a temporary
breakpoint at the beginning of the main procedure and then invoking
the `run' command.
Some programs contain an elaboration phase where some startup code
is executed before the main program is called. This depends on the
languages used to write your program. In C++ for instance,
constructors for static and global objects are executed before
`main' is called. It is therefore possible that the debugger stops
before reaching the main procedure. However, the temporary
breakpoint will remain to halt execution.
Specify the arguments to give to your program as arguments to the
`start' command. These arguments will be given verbatim to the
underlying `run' command. Note that the same arguments will be
reused if no argument is provided during subsequent calls to
`start' or `run'.
It is sometimes necessary to debug the program during elaboration.
In these cases, using the `start' command would stop the
execution of your program too late, as the program would have
already completed the elaboration phase. Under these
circumstances, insert breakpoints in your elaboration code before
running your program.
File: gdb.info, Node: Arguments, Next: Environment, Prev: Starting, Up: Running
4.3 Your program's arguments
============================
The arguments to your program can be specified by the arguments of the
`run' command. They are passed to a shell, which expands wildcard
characters and performs redirection of I/O, and thence to your program.
Your `SHELL' environment variable (if it exists) specifies what shell
GDB uses. If you do not define `SHELL', GDB uses the default shell
(`/bin/sh' on Unix).
On non-Unix systems, the program is usually invoked directly by GDB,
which emulates I/O redirection via the appropriate system calls, and
the wildcard characters are expanded by the startup code of the
program, not by the shell.
`run' with no arguments uses the same arguments used by the previous
`run', or those set by the `set args' command.
`set args'
Specify the arguments to be used the next time your program is
run. If `set args' has no arguments, `run' executes your program
with no arguments. Once you have run your program with arguments,
using `set args' before the next `run' is the only way to run it
again without arguments.
`show args'
Show the arguments to give your program when it is started.
File: gdb.info, Node: Environment, Next: Working Directory, Prev: Arguments, Up: Running
4.4 Your program's environment
==============================
The "environment" consists of a set of environment variables and their
values. Environment variables conventionally record such things as
your user name, your home directory, your terminal type, and your search
path for programs to run. Usually you set up environment variables with
the shell and they are inherited by all the other programs you run.
When debugging, it can be useful to try running your program with a
modified environment without having to start GDB over again.
`path DIRECTORY'
Add DIRECTORY to the front of the `PATH' environment variable (the
search path for executables) that will be passed to your program.
The value of `PATH' used by GDB does not change. You may specify
several directory names, separated by whitespace or by a
system-dependent separator character (`:' on Unix, `;' on MS-DOS
and MS-Windows). If DIRECTORY is already in the path, it is moved
to the front, so it is searched sooner.
You can use the string `$cwd' to refer to whatever is the current
working directory at the time GDB searches the path. If you use
`.' instead, it refers to the directory where you executed the
`path' command. GDB replaces `.' in the DIRECTORY argument (with
the current path) before adding DIRECTORY to the search path.
`show paths'
Display the list of search paths for executables (the `PATH'
environment variable).
`show environment [VARNAME]'
Print the value of environment variable VARNAME to be given to
your program when it starts. If you do not supply VARNAME, print
the names and values of all environment variables to be given to
your program. You can abbreviate `environment' as `env'.
`set environment VARNAME [=VALUE]'
Set environment variable VARNAME to VALUE. The value changes for
your program only, not for GDB itself. VALUE may be any string;
the values of environment variables are just strings, and any
interpretation is supplied by your program itself. The VALUE
parameter is optional; if it is eliminated, the variable is set to
a null value.
For example, this command:
set env USER = foo
tells the debugged program, when subsequently run, that its user
is named `foo'. (The spaces around `=' are used for clarity here;
they are not actually required.)
`unset environment VARNAME'
Remove variable VARNAME from the environment to be passed to your
program. This is different from `set env VARNAME ='; `unset
environment' removes the variable from the environment, rather
than assigning it an empty value.
_Warning:_ On Unix systems, GDB runs your program using the shell
indicated by your `SHELL' environment variable if it exists (or
`/bin/sh' if not). If your `SHELL' variable names a shell that runs an
initialization file--such as `.cshrc' for C-shell, or `.bashrc' for
BASH--any variables you set in that file affect your program. You may
wish to move setting of environment variables to files that are only
run when you sign on, such as `.login' or `.profile'.
File: gdb.info, Node: Working Directory, Next: Input/Output, Prev: Environment, Up: Running
4.5 Your program's working directory
====================================
Each time you start your program with `run', it inherits its working
directory from the current working directory of GDB. The GDB working
directory is initially whatever it inherited from its parent process
(typically the shell), but you can specify a new working directory in
GDB with the `cd' command.
The GDB working directory also serves as a default for the commands
that specify files for GDB to operate on. *Note Commands to specify
files: Files.
`cd DIRECTORY'
Set the GDB working directory to DIRECTORY.
`pwd'
Print the GDB working directory.
File: gdb.info, Node: Input/Output, Next: Attach, Prev: Working Directory, Up: Running
4.6 Your program's input and output
===================================
By default, the program you run under GDB does input and output to the
same terminal that GDB uses. GDB switches the terminal to its own
terminal modes to interact with you, but it records the terminal modes
your program was using and switches back to them when you continue
running your program.
`info terminal'
Displays information recorded by GDB about the terminal modes your
program is using.
You can redirect your program's input and/or output using shell
redirection with the `run' command. For example,
run > outfile
starts your program, diverting its output to the file `outfile'.
Another way to specify where your program should do input and output
is with the `tty' command. This command accepts a file name as
argument, and causes this file to be the default for future `run'
commands. It also resets the controlling terminal for the child
process, for future `run' commands. For example,
tty /dev/ttyb
directs that processes started with subsequent `run' commands default
to do input and output on the terminal `/dev/ttyb' and have that as
their controlling terminal.
An explicit redirection in `run' overrides the `tty' command's
effect on the input/output device, but not its effect on the controlling
terminal.
When you use the `tty' command or redirect input in the `run'
command, only the input _for your program_ is affected. The input for
GDB still comes from your terminal.
File: gdb.info, Node: Attach, Next: Kill Process, Prev: Input/Output, Up: Running
4.7 Debugging an already-running process
========================================
`attach PROCESS-ID'
This command attaches to a running process--one that was started
outside GDB. (`info files' shows your active targets.) The
command takes as argument a process ID. The usual way to find out
the process-id of a Unix process is with the `ps' utility, or with
the `jobs -l' shell command.
`attach' does not repeat if you press a second time after
executing the command.
To use `attach', your program must be running in an environment
which supports processes; for example, `attach' does not work for
programs on bare-board targets that lack an operating system. You must
also have permission to send the process a signal.
When you use `attach', the debugger finds the program running in the
process first by looking in the current working directory, then (if the
program is not found) by using the source file search path (*note
Specifying source directories: Source Path.). You can also use the
`file' command to load the program. *Note Commands to Specify Files:
Files.
The first thing GDB does after arranging to debug the specified
process is to stop it. You can examine and modify an attached process
with all the GDB commands that are ordinarily available when you start
processes with `run'. You can insert breakpoints; you can step and
continue; you can modify storage. If you would rather the process
continue running, you may use the `continue' command after attaching
GDB to the process.
For a process already being stopped before the `attach' command
executed you get the informational message below. Other signals may be
occasionally shown if they were being delivered right the time the
`attach' command executed. Such process is left still stopped after
the `detach' command as long as you have not used the `continue'
command (or similiar one) during your debugging session.
Attaching to program: /bin/sleep, process 16289
Redelivering pending Stopped (signal).
`detach'
When you have finished debugging the attached process, you can use
the `detach' command to release it from GDB control. Detaching the
process continues its execution unless it was already stopped
before the attachment and a `continue' type command has not been
executed. After the `detach' command, that process and GDB become
completely independent once more, and you are ready to `attach'
another process or start one with `run'. `detach' does not repeat
if you press again after executing the command.
If you exit GDB or use the `run' command while you have an attached
process, you kill that process. By default, GDB asks for confirmation
if you try to do either of these things; you can control whether or not
you need to confirm by using the `set confirm' command (*note Optional
warnings and messages: Messages/Warnings.).
File: gdb.info, Node: Kill Process, Next: Threads, Prev: Attach, Up: Running
4.8 Killing the child process
=============================
`kill'
Kill the child process in which your program is running under GDB.
This command is useful if you wish to debug a core dump instead of a
running process. GDB ignores any core dump file while your program is
running.
On some operating systems, a program cannot be executed outside GDB
while you have breakpoints set on it inside GDB. You can use the
`kill' command in this situation to permit running your program outside
the debugger.
The `kill' command is also useful if you wish to recompile and
relink your program, since on many systems it is impossible to modify an
executable file while it is running in a process. In this case, when
you next type `run', GDB notices that the file has changed, and reads
the symbol table again (while trying to preserve your current
breakpoint settings).
File: gdb.info, Node: Threads, Next: Processes, Prev: Kill Process, Up: Running
4.9 Debugging programs with multiple threads
============================================
In some operating systems, such as HP-UX and Solaris, a single program
may have more than one "thread" of execution. The precise semantics of
threads differ from one operating system to another, but in general the
threads of a single program are akin to multiple processes--except that
they share one address space (that is, they can all examine and modify
the same variables). On the other hand, each thread has its own
registers and execution stack, and perhaps private memory.
GDB provides these facilities for debugging multi-thread programs:
* automatic notification of new threads
* `thread THREADNO', a command to switch among threads
* `info threads', a command to inquire about existing threads
* `thread apply [THREADNO] [ALL] ARGS', a command to apply a command
to a list of threads
* thread-specific breakpoints
_Warning:_ These facilities are not yet available on every GDB
configuration where the operating system supports threads. If
your GDB does not support threads, these commands have no effect.
For example, a system without thread support shows no output from
`info threads', and always rejects the `thread' command, like this:
(gdb) info threads
(gdb) thread 1
Thread ID 1 not known. Use the "info threads" command to
see the IDs of currently known threads.
The GDB thread debugging facility allows you to observe all threads
while your program runs--but whenever GDB takes control, one thread in
particular is always the focus of debugging. This thread is called the
"current thread". Debugging commands show program information from the
perspective of the current thread.
Whenever GDB detects a new thread in your program, it displays the
target system's identification for the thread with a message in the
form `[New SYSTAG]'. SYSTAG is a thread identifier whose form varies
depending on the particular system. For example, on LynxOS, you might
see
[New process 35 thread 27]
when GDB notices a new thread. In contrast, on an SGI system, the
SYSTAG is simply something like `process 368', with no further
qualifier.
For debugging purposes, GDB associates its own thread number--always
a single integer--with each thread in your program.
`info threads'
Display a summary of all threads currently in your program. GDB
displays for each thread (in this order):
1. the thread number assigned by GDB
2. the target system's thread identifier (SYSTAG)
3. the current stack frame summary for that thread
An asterisk `*' to the left of the GDB thread number indicates the
current thread.
For example,
(gdb) info threads
3 process 35 thread 27 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()
* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c:68
On HP-UX systems:
For debugging purposes, GDB associates its own thread number--a
small integer assigned in thread-creation order--with each thread in
your program.
Whenever GDB detects a new thread in your program, it displays both
GDB's thread number and the target system's identification for the
thread with a message in the form `[New SYSTAG]'. SYSTAG is a thread
identifier whose form varies depending on the particular system. For
example, on HP-UX, you see
[New thread 2 (system thread 26594)]
when GDB notices a new thread.
`info threads'
Display a summary of all threads currently in your program. GDB
displays for each thread (in this order):
1. the thread number assigned by GDB
2. the target system's thread identifier (SYSTAG)
3. the current stack frame summary for that thread
An asterisk `*' to the left of the GDB thread number indicates the
current thread.
For example,
(gdb) info threads
* 3 system thread 26607 worker (wptr=0x7b09c318 "@") \
at quicksort.c:137
2 system thread 26606 0x7b0030d8 in __ksleep () \
from /usr/lib/libc.2
1 system thread 27905 0x7b003498 in _brk () \
from /usr/lib/libc.2
`thread THREADNO'
Make thread number THREADNO the current thread. The command
argument THREADNO is the internal GDB thread number, as shown in
the first field of the `info threads' display. GDB responds by
displaying the system identifier of the thread you selected, and
its current stack frame summary:
(gdb) thread 2
[Switching to process 35 thread 23]
0x34e5 in sigpause ()
As with the `[New ...]' message, the form of the text after
`Switching to' depends on your system's conventions for identifying
threads.
`thread apply [THREADNO] [ALL] ARGS'
The `thread apply' command allows you to apply a command to one or
more threads. Specify the numbers of the threads that you want
affected with the command argument THREADNO. THREADNO is the
internal GDB thread number, as shown in the first field of the
`info threads' display. To apply a command to all threads, use
`thread apply all' ARGS.
Whenever GDB stops your program, due to a breakpoint or a signal, it
automatically selects the thread where that breakpoint or signal
happened. GDB alerts you to the context switch with a message of the
form `[Switching to SYSTAG]' to identify the thread.
*Note Stopping and starting multi-thread programs: Thread Stops, for
more information about how GDB behaves when you stop and start programs
with multiple threads.
*Note Setting watchpoints: Set Watchpoints, for information about
watchpoints in programs with multiple threads.
File: gdb.info, Node: Processes, Prev: Threads, Up: Running
4.10 Debugging programs with multiple processes
===============================================
On most systems, GDB has no special support for debugging programs
which create additional processes using the `fork' function. When a
program forks, GDB will continue to debug the parent process and the
child process will run unimpeded. If you have set a breakpoint in any
code which the child then executes, the child will get a `SIGTRAP'
signal which (unless it catches the signal) will cause it to terminate.
However, if you want to debug the child process there is a workaround
which isn't too painful. Put a call to `sleep' in the code which the
child process executes after the fork. It may be useful to sleep only
if a certain environment variable is set, or a certain file exists, so
that the delay need not occur when you don't want to run GDB on the
child. While the child is sleeping, use the `ps' program to get its
process ID. Then tell GDB (a new invocation of GDB if you are also
debugging the parent process) to attach to the child process (*note
Attach::). From that point on you can debug the child process just
like any other process which you attached to.
On some systems, GDB provides support for debugging programs that
create additional processes using the `fork' or `vfork' functions.
Currently, the only platforms with this feature are HP-UX (11.x and
later only?) and GNU/Linux (kernel version 2.5.60 and later).
By default, when a program forks, GDB will continue to debug the
parent process and the child process will run unimpeded.
If you want to follow the child process instead of the parent
process, use the command `set follow-fork-mode'.
`set follow-fork-mode MODE'
Set the debugger response to a program call of `fork' or `vfork'.
A call to `fork' or `vfork' creates a new process. The MODE can
be:
`parent'
The original process is debugged after a fork. The child
process runs unimpeded. This is the default.
`child'
The new process is debugged after a fork. The parent process
runs unimpeded.
`show follow-fork-mode'
Display the current debugger response to a `fork' or `vfork' call.
If you ask to debug a child process and a `vfork' is followed by an
`exec', GDB executes the new target up to the first breakpoint in the
new target. If you have a breakpoint set on `main' in your original
program, the breakpoint will also be set on the child process's `main'.
When a child process is spawned by `vfork', you cannot debug the
child or parent until an `exec' call completes.
If you issue a `run' command to GDB after an `exec' call executes,
the new target restarts. To restart the parent process, use the `file'
command with the parent executable name as its argument.
You can use the `catch' command to make GDB stop whenever a `fork',
`vfork', or `exec' call is made. *Note Setting catchpoints: Set
Catchpoints.
File: gdb.info, Node: Stopping, Next: Stack, Prev: Running, Up: Top
5 Stopping and Continuing
*************************
The principal purposes of using a debugger are so that you can stop your
program before it terminates; or so that, if your program runs into
trouble, you can investigate and find out why.
Inside GDB, your program may stop for any of several reasons, such
as a signal, a breakpoint, or reaching a new line after a GDB command
such as `step'. You may then examine and change variables, set new
breakpoints or remove old ones, and then continue execution. Usually,
the messages shown by GDB provide ample explanation of the status of
your program--but you can also explicitly request this information at
any time.
`info program'
Display information about the status of your program: whether it is
running or not, what process it is, and why it stopped.
* Menu:
* Breakpoints:: Breakpoints, watchpoints, and catchpoints
* Continuing and Stepping:: Resuming execution
* Signals:: Signals
* Thread Stops:: Stopping and starting multi-thread programs
File: gdb.info, Node: Breakpoints, Next: Continuing and Stepping, Up: Stopping
5.1 Breakpoints, watchpoints, and catchpoints
=============================================
A "breakpoint" makes your program stop whenever a certain point in the
program is reached. For each breakpoint, you can add conditions to
control in finer detail whether your program stops. You can set
breakpoints with the `break' command and its variants (*note Setting
breakpoints: Set Breaks.), to specify the place where your program
should stop by line number, function name or exact address in the
program.
In HP-UX, SunOS 4.x, SVR4, and Alpha OSF/1 configurations, you can
set breakpoints in shared libraries before the executable is run.
There is a minor limitation on HP-UX systems: you must wait until the
executable is run in order to set breakpoints in shared library
routines that are not called directly by the program (for example,
routines that are arguments in a `pthread_create' call).
A "watchpoint" is a special breakpoint that stops your program when
the value of an expression changes. You must use a different command
to set watchpoints (*note Setting watchpoints: Set Watchpoints.), but
aside from that, you can manage a watchpoint like any other breakpoint:
you enable, disable, and delete both breakpoints and watchpoints using
the same commands.
You can arrange to have values from your program displayed
automatically whenever GDB stops at a breakpoint. *Note Automatic
display: Auto Display.
A "catchpoint" is another special breakpoint that stops your program
when a certain kind of event occurs, such as the throwing of a C++
exception or the loading of a library. As with watchpoints, you use a
different command to set a catchpoint (*note Setting catchpoints: Set
Catchpoints.), but aside from that, you can manage a catchpoint like any
other breakpoint. (To stop when your program receives a signal, use the
`handle' command; see *Note Signals: Signals.)
GDB assigns a number to each breakpoint, watchpoint, or catchpoint
when you create it; these numbers are successive integers starting with
one. In many of the commands for controlling various features of
breakpoints you use the breakpoint number to say which breakpoint you
want to change. Each breakpoint may be "enabled" or "disabled"; if
disabled, it has no effect on your program until you enable it again.
Some GDB commands accept a range of breakpoints on which to operate.
A breakpoint range is either a single breakpoint number, like `5', or
two such numbers, in increasing order, separated by a hyphen, like
`5-7'. When a breakpoint range is given to a command, all breakpoint
in that range are operated on.
* Menu:
* Set Breaks:: Setting breakpoints
* Set Watchpoints:: Setting watchpoints
* Set Catchpoints:: Setting catchpoints
* Delete Breaks:: Deleting breakpoints
* Disabling:: Disabling breakpoints
* Conditions:: Break conditions
* Break Commands:: Breakpoint command lists
* Breakpoint Menus:: Breakpoint menus
* Error in Breakpoints:: ``Cannot insert breakpoints''
* Breakpoint related warnings:: ``Breakpoint address adjusted...''
File: gdb.info, Node: Set Breaks, Next: Set Watchpoints, Up: Breakpoints
5.1.1 Setting breakpoints
-------------------------
Breakpoints are set with the `break' command (abbreviated `b'). The
debugger convenience variable `$bpnum' records the number of the
breakpoint you've set most recently; see *Note Convenience variables:
Convenience Vars, for a discussion of what you can do with convenience
variables.
You have several ways to say where the breakpoint should go.
`break FUNCTION'
Set a breakpoint at entry to function FUNCTION. When using source
languages that permit overloading of symbols, such as C++,
FUNCTION may refer to more than one possible place to break.
*Note Breakpoint menus: Breakpoint Menus, for a discussion of that
situation.
`break +OFFSET'
`break -OFFSET'
Set a breakpoint some number of lines forward or back from the
position at which execution stopped in the currently selected
"stack frame". (*Note Frames: Frames, for a description of stack
frames.)
`break LINENUM'
Set a breakpoint at line LINENUM in the current source file. The
current source file is the last file whose source text was printed.
The breakpoint will stop your program just before it executes any
of the code on that line.
`break FILENAME:LINENUM'
Set a breakpoint at line LINENUM in source file FILENAME.
`break FILENAME:FUNCTION'
Set a breakpoint at entry to function FUNCTION found in file
FILENAME. Specifying a file name as well as a function name is
superfluous except when multiple files contain similarly named
functions.
`break *ADDRESS'
Set a breakpoint at address ADDRESS. You can use this to set
breakpoints in parts of your program which do not have debugging
information or source files.
`break'
When called without any arguments, `break' sets a breakpoint at
the next instruction to be executed in the selected stack frame
(*note Examining the Stack: Stack.). In any selected frame but the
innermost, this makes your program stop as soon as control returns
to that frame. This is similar to the effect of a `finish'
command in the frame inside the selected frame--except that
`finish' does not leave an active breakpoint. If you use `break'
without an argument in the innermost frame, GDB stops the next
time it reaches the current location; this may be useful inside
loops.
GDB normally ignores breakpoints when it resumes execution, until
at least one instruction has been executed. If it did not do
this, you would be unable to proceed past a breakpoint without
first disabling the breakpoint. This rule applies whether or not
the breakpoint already existed when your program stopped.
`break ... if COND'
Set a breakpoint with condition COND; evaluate the expression COND
each time the breakpoint is reached, and stop only if the value is
nonzero--that is, if COND evaluates as true. `...' stands for one
of the possible arguments described above (or no argument)
specifying where to break. *Note Break conditions: Conditions,
for more information on breakpoint conditions.
`tbreak ARGS'
Set a breakpoint enabled only for one stop. ARGS are the same as
for the `break' command, and the breakpoint is set in the same
way, but the breakpoint is automatically deleted after the first
time your program stops there. *Note Disabling breakpoints:
Disabling.
`hbreak ARGS'
Set a hardware-assisted breakpoint. ARGS are the same as for the
`break' command and the breakpoint is set in the same way, but the
breakpoint requires hardware support and some target hardware may
not have this support. The main purpose of this is EPROM/ROM code
debugging, so you can set a breakpoint at an instruction without
changing the instruction. This can be used with the new
trap-generation provided by SPARClite DSU and some x86-based
targets. These targets will generate traps when a program
accesses some data or instruction address that is assigned to the
debug registers. However the hardware breakpoint registers can
take a limited number of breakpoints. For example, on the DSU,
only two data breakpoints can be set at a time, and GDB will
reject this command if more than two are used. Delete or disable
unused hardware breakpoints before setting new ones (*note
Disabling: Disabling.). *Note Break conditions: Conditions.
*Note set remote hardware-breakpoint-limit::.
`thbreak ARGS'
Set a hardware-assisted breakpoint enabled only for one stop. ARGS
are the same as for the `hbreak' command and the breakpoint is set
in the same way. However, like the `tbreak' command, the
breakpoint is automatically deleted after the first time your
program stops there. Also, like the `hbreak' command, the
breakpoint requires hardware support and some target hardware may
not have this support. *Note Disabling breakpoints: Disabling.
See also *Note Break conditions: Conditions.
`rbreak REGEX'
Set breakpoints on all functions matching the regular expression
REGEX. This command sets an unconditional breakpoint on all
matches, printing a list of all breakpoints it set. Once these
breakpoints are set, they are treated just like the breakpoints
set with the `break' command. You can delete them, disable them,
or make them conditional the same way as any other breakpoint.
The syntax of the regular expression is the standard one used with
tools like `grep'. Note that this is different from the syntax
used by shells, so for instance `foo*' matches all functions that
include an `fo' followed by zero or more `o's. There is an
implicit `.*' leading and trailing the regular expression you
supply, so to match only functions that begin with `foo', use
`^foo'.
When debugging C++ programs, `rbreak' is useful for setting
breakpoints on overloaded functions that are not members of any
special classes.
The `rbreak' command can be used to set breakpoints in *all* the
functions in a program, like this:
(gdb) rbreak .
`info breakpoints [N]'
`info break [N]'
`info watchpoints [N]'
Print a table of all breakpoints, watchpoints, and catchpoints set
and not deleted, with the following columns for each breakpoint:
_Breakpoint Numbers_
_Type_
Breakpoint, watchpoint, or catchpoint.
_Disposition_
Whether the breakpoint is marked to be disabled or deleted
when hit.
_Enabled or Disabled_
Enabled breakpoints are marked with `y'. `n' marks
breakpoints that are not enabled.
_Address_
Where the breakpoint is in your program, as a memory address.
If the breakpoint is pending (see below for details) on a
future load of a shared library, the address will be listed
as `'.
_What_
Where the breakpoint is in the source for your program, as a
file and line number. For a pending breakpoint, the original
string passed to the breakpoint command will be listed as it
cannot be resolved until the appropriate shared library is
loaded in the future.
If a breakpoint is conditional, `info break' shows the condition on
the line following the affected breakpoint; breakpoint commands,
if any, are listed after that. A pending breakpoint is allowed to
have a condition specified for it. The condition is not parsed
for validity until a shared library is loaded that allows the
pending breakpoint to resolve to a valid location.
`info break' with a breakpoint number N as argument lists only
that breakpoint. The convenience variable `$_' and the default
examining-address for the `x' command are set to the address of
the last breakpoint listed (*note Examining memory: Memory.).
`info break' displays a count of the number of times the breakpoint
has been hit. This is especially useful in conjunction with the
`ignore' command. You can ignore a large number of breakpoint
hits, look at the breakpoint info to see how many times the
breakpoint was hit, and then run again, ignoring one less than
that number. This will get you quickly to the last hit of that
breakpoint.
GDB allows you to set any number of breakpoints at the same place in
your program. There is nothing silly or meaningless about this. When
the breakpoints are conditional, this is even useful (*note Break
conditions: Conditions.).
If a specified breakpoint location cannot be found, it may be due to
the fact that the location is in a shared library that is yet to be
loaded. In such a case, you may want GDB to create a special
breakpoint (known as a "pending breakpoint") that attempts to resolve
itself in the future when an appropriate shared library gets loaded.
Pending breakpoints are useful to set at the start of your GDB
session for locations that you know will be dynamically loaded later by
the program being debugged. When shared libraries are loaded, a check
is made to see if the load resolves any pending breakpoint locations.
If a pending breakpoint location gets resolved, a regular breakpoint is
created and the original pending breakpoint is removed.
GDB provides some additional commands for controlling pending
breakpoint support:
`set breakpoint pending auto'
This is the default behavior. When GDB cannot find the breakpoint
location, it queries you whether a pending breakpoint should be
created.
`set breakpoint pending on'
This indicates that an unrecognized breakpoint location should
automatically result in a pending breakpoint being created.
`set breakpoint pending off'
This indicates that pending breakpoints are not to be created. Any
unrecognized breakpoint location results in an error. This
setting does not affect any pending breakpoints previously created.
`show breakpoint pending'
Show the current behavior setting for creating pending breakpoints.
Normal breakpoint operations apply to pending breakpoints as well.
You may specify a condition for a pending breakpoint and/or commands to
run when the breakpoint is reached. You can also enable or disable the
pending breakpoint. When you specify a condition for a pending
breakpoint, the parsing of the condition will be deferred until the
point where the pending breakpoint location is resolved. Disabling a
pending breakpoint tells GDB to not attempt to resolve the breakpoint
on any subsequent shared library load. When a pending breakpoint is
re-enabled, GDB checks to see if the location is already resolved.
This is done because any number of shared library loads could have
occurred since the time the breakpoint was disabled and one or more of
these loads could resolve the location.
GDB itself sometimes sets breakpoints in your program for special
purposes, such as proper handling of `longjmp' (in C programs). These
internal breakpoints are assigned negative numbers, starting with `-1';
`info breakpoints' does not display them. You can see these
breakpoints with the GDB maintenance command `maint info breakpoints'
(*note maint info breakpoints::).
File: gdb.info, Node: Set Watchpoints, Next: Set Catchpoints, Prev: Set Breaks, Up: Breakpoints
5.1.2 Setting watchpoints
-------------------------
You can use a watchpoint to stop execution whenever the value of an
expression changes, without having to predict a particular place where
this may happen.
Depending on your system, watchpoints may be implemented in software
or hardware. GDB does software watchpointing by single-stepping your
program and testing the variable's value each time, which is hundreds of
times slower than normal execution. (But this may still be worth it, to
catch errors where you have no clue what part of your program is the
culprit.)
On some systems, such as HP-UX, GNU/Linux and some other x86-based
targets, GDB includes support for hardware watchpoints, which do not
slow down the running of your program.
`watch EXPR'
Set a watchpoint for an expression. GDB will break when EXPR is
written into by the program and its value changes.
`rwatch EXPR'
Set a watchpoint that will break when watch EXPR is read by the
program.
`awatch EXPR'
Set a watchpoint that will break when EXPR is either read or
written into by the program.
`info watchpoints'
This command prints a list of watchpoints, breakpoints, and
catchpoints; it is the same as `info break'.
GDB sets a "hardware watchpoint" if possible. Hardware watchpoints
execute very quickly, and the debugger reports a change in value at the
exact instruction where the change occurs. If GDB cannot set a
hardware watchpoint, it sets a software watchpoint, which executes more
slowly and reports the change in value at the next statement, not the
instruction, after the change occurs.
When you issue the `watch' command, GDB reports
Hardware watchpoint NUM: EXPR
if it was able to set a hardware watchpoint.
Currently, the `awatch' and `rwatch' commands can only set hardware
watchpoints, because accesses to data that don't change the value of
the watched expression cannot be detected without examining every
instruction as it is being executed, and GDB does not do that
currently. If GDB finds that it is unable to set a hardware breakpoint
with the `awatch' or `rwatch' command, it will print a message like
this:
Expression cannot be implemented with read/access watchpoint.
Sometimes, GDB cannot set a hardware watchpoint because the data
type of the watched expression is wider than what a hardware watchpoint
on the target machine can handle. For example, some systems can only
watch regions that are up to 4 bytes wide; on such systems you cannot
set hardware watchpoints for an expression that yields a
double-precision floating-point number (which is typically 8 bytes
wide). As a work-around, it might be possible to break the large region
into a series of smaller ones and watch them with separate watchpoints.
If you set too many hardware watchpoints, GDB might be unable to
insert all of them when you resume the execution of your program.
Since the precise number of active watchpoints is unknown until such
time as the program is about to be resumed, GDB might not be able to
warn you about this when you set the watchpoints, and the warning will
be printed only when the program is resumed:
Hardware watchpoint NUM: Could not insert watchpoint
If this happens, delete or disable some of the watchpoints.
The SPARClite DSU will generate traps when a program accesses some
data or instruction address that is assigned to the debug registers.
For the data addresses, DSU facilitates the `watch' command. However
the hardware breakpoint registers can only take two data watchpoints,
and both watchpoints must be the same kind. For example, you can set
two watchpoints with `watch' commands, two with `rwatch' commands, *or*
two with `awatch' commands, but you cannot set one watchpoint with one
command and the other with a different command. GDB will reject the
command if you try to mix watchpoints. Delete or disable unused
watchpoint commands before setting new ones.
If you call a function interactively using `print' or `call', any
watchpoints you have set will be inactive until GDB reaches another
kind of breakpoint or the call completes.
GDB automatically deletes watchpoints that watch local (automatic)
variables, or expressions that involve such variables, when they go out
of scope, that is, when the execution leaves the block in which these
variables were defined. In particular, when the program being debugged
terminates, _all_ local variables go out of scope, and so only
watchpoints that watch global variables remain set. If you rerun the
program, you will need to set all such watchpoints again. One way of
doing that would be to set a code breakpoint at the entry to the `main'
function and when it breaks, set all the watchpoints.
_Warning:_ In multi-thread programs, watchpoints have only limited
usefulness. With the current watchpoint implementation, GDB can
only watch the value of an expression _in a single thread_. If
you are confident that the expression can only change due to the
current thread's activity (and if you are also confident that no
other thread can become current), then you can use watchpoints as
usual. However, GDB may not notice when a non-current thread's
activity changes the expression.
_HP-UX Warning:_ In multi-thread programs, software watchpoints
have only limited usefulness. If GDB creates a software
watchpoint, it can only watch the value of an expression _in a
single thread_. If you are confident that the expression can only
change due to the current thread's activity (and if you are also
confident that no other thread can become current), then you can
use software watchpoints as usual. However, GDB may not notice
when a non-current thread's activity changes the expression.
(Hardware watchpoints, in contrast, watch an expression in all
threads.)
*Note set remote hardware-watchpoint-limit::.
File: gdb.info, Node: Set Catchpoints, Next: Delete Breaks, Prev: Set Watchpoints, Up: Breakpoints
5.1.3 Setting catchpoints
-------------------------
You can use "catchpoints" to cause the debugger to stop for certain
kinds of program events, such as C++ exceptions or the loading of a
shared library. Use the `catch' command to set a catchpoint.
`catch EVENT'
Stop when EVENT occurs. EVENT can be any of the following:
`throw'
The throwing of a C++ exception.
`catch'
The catching of a C++ exception.
`exec'
A call to `exec'. This is currently only available for HP-UX.
`fork'
A call to `fork'. This is currently only available for HP-UX.
`vfork'
A call to `vfork'. This is currently only available for
HP-UX.
`load'
`load LIBNAME'
The dynamic loading of any shared library, or the loading of
the library LIBNAME. This is currently only available for
HP-UX.
`unload'
`unload LIBNAME'
The unloading of any dynamically loaded shared library, or
the unloading of the library LIBNAME. This is currently only
available for HP-UX.
`tcatch EVENT'
Set a catchpoint that is enabled only for one stop. The
catchpoint is automatically deleted after the first time the event
is caught.
Use the `info break' command to list the current catchpoints.
There are currently some limitations to C++ exception handling
(`catch throw' and `catch catch') in GDB:
* If you call a function interactively, GDB normally returns control
to you when the function has finished executing. If the call
raises an exception, however, the call may bypass the mechanism
that returns control to you and cause your program either to abort
or to simply continue running until it hits a breakpoint, catches
a signal that GDB is listening for, or exits. This is the case
even if you set a catchpoint for the exception; catchpoints on
exceptions are disabled within interactive calls.
* You cannot raise an exception interactively.
* You cannot install an exception handler interactively.
Sometimes `catch' is not the best way to debug exception handling:
if you need to know exactly where an exception is raised, it is better
to stop _before_ the exception handler is called, since that way you
can see the stack before any unwinding takes place. If you set a
breakpoint in an exception handler instead, it may not be easy to find
out where the exception was raised.
To stop just before an exception handler is called, you need some
knowledge of the implementation. In the case of GNU C++, exceptions are
raised by calling a library function named `__raise_exception' which
has the following ANSI C interface:
/* ADDR is where the exception identifier is stored.
ID is the exception identifier. */
void __raise_exception (void **addr, void *id);
To make the debugger catch all exceptions before any stack unwinding
takes place, set a breakpoint on `__raise_exception' (*note
Breakpoints; watchpoints; and exceptions: Breakpoints.).
With a conditional breakpoint (*note Break conditions: Conditions.)
that depends on the value of ID, you can stop your program when a
specific exception is raised. You can use multiple conditional
breakpoints to stop your program when any of a number of exceptions are
raised.
File: gdb.info, Node: Delete Breaks, Next: Disabling, Prev: Set Catchpoints, Up: Breakpoints
5.1.4 Deleting breakpoints
--------------------------
It is often necessary to eliminate a breakpoint, watchpoint, or
catchpoint once it has done its job and you no longer want your program
to stop there. This is called "deleting" the breakpoint. A breakpoint
that has been deleted no longer exists; it is forgotten.
With the `clear' command you can delete breakpoints according to
where they are in your program. With the `delete' command you can
delete individual breakpoints, watchpoints, or catchpoints by specifying
their breakpoint numbers.
It is not necessary to delete a breakpoint to proceed past it. GDB
automatically ignores breakpoints on the first instruction to be
executed when you continue execution without changing the execution
address.
`clear'
Delete any breakpoints at the next instruction to be executed in
the selected stack frame (*note Selecting a frame: Selection.).
When the innermost frame is selected, this is a good way to delete
a breakpoint where your program just stopped.
`clear FUNCTION'
`clear FILENAME:FUNCTION'
Delete any breakpoints set at entry to the function FUNCTION.
`clear LINENUM'
`clear FILENAME:LINENUM'
Delete any breakpoints set at or within the code of the specified
line.
`delete [breakpoints] [RANGE...]'
Delete the breakpoints, watchpoints, or catchpoints of the
breakpoint ranges specified as arguments. If no argument is
specified, delete all breakpoints (GDB asks confirmation, unless
you have `set confirm off'). You can abbreviate this command as
`d'.
File: gdb.info, Node: Disabling, Next: Conditions, Prev: Delete Breaks, Up: Breakpoints
5.1.5 Disabling breakpoints
---------------------------
Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
prefer to "disable" it. This makes the breakpoint inoperative as if it
had been deleted, but remembers the information on the breakpoint so
that you can "enable" it again later.
You disable and enable breakpoints, watchpoints, and catchpoints with
the `enable' and `disable' commands, optionally specifying one or more
breakpoint numbers as arguments. Use `info break' or `info watch' to
print a list of breakpoints, watchpoints, and catchpoints if you do not
know which numbers to use.
A breakpoint, watchpoint, or catchpoint can have any of four
different states of enablement:
* Enabled. The breakpoint stops your program. A breakpoint set
with the `break' command starts out in this state.
* Disabled. The breakpoint has no effect on your program.
* Enabled once. The breakpoint stops your program, but then becomes
disabled.
* Enabled for deletion. The breakpoint stops your program, but
immediately after it does so it is deleted permanently. A
breakpoint set with the `tbreak' command starts out in this state.
You can use the following commands to enable or disable breakpoints,
watchpoints, and catchpoints:
`disable [breakpoints] [RANGE...]'
Disable the specified breakpoints--or all breakpoints, if none are
listed. A disabled breakpoint has no effect but is not forgotten.
All options such as ignore-counts, conditions and commands are
remembered in case the breakpoint is enabled again later. You may
abbreviate `disable' as `dis'.
`enable [breakpoints] [RANGE...]'
Enable the specified breakpoints (or all defined breakpoints).
They become effective once again in stopping your program.
`enable [breakpoints] once RANGE...'
Enable the specified breakpoints temporarily. GDB disables any of
these breakpoints immediately after stopping your program.
`enable [breakpoints] delete RANGE...'
Enable the specified breakpoints to work once, then die. GDB
deletes any of these breakpoints as soon as your program stops
there.
Except for a breakpoint set with `tbreak' (*note Setting
breakpoints: Set Breaks.), breakpoints that you set are initially
enabled; subsequently, they become disabled or enabled only when you
use one of the commands above. (The command `until' can set and delete
a breakpoint of its own, but it does not change the state of your other
breakpoints; see *Note Continuing and stepping: Continuing and
Stepping.)
File: gdb.info, Node: Conditions, Next: Break Commands, Prev: Disabling, Up: Breakpoints
5.1.6 Break conditions
----------------------
The simplest sort of breakpoint breaks every time your program reaches a
specified place. You can also specify a "condition" for a breakpoint.
A condition is just a Boolean expression in your programming language
(*note Expressions: Expressions.). A breakpoint with a condition
evaluates the expression each time your program reaches it, and your
program stops only if the condition is _true_.
This is the converse of using assertions for program validation; in
that situation, you want to stop when the assertion is violated--that
is, when the condition is false. In C, if you want to test an
assertion expressed by the condition ASSERT, you should set the
condition `! ASSERT' on the appropriate breakpoint.
Conditions are also accepted for watchpoints; you may not need them,
since a watchpoint is inspecting the value of an expression anyhow--but
it might be simpler, say, to just set a watchpoint on a variable name,
and specify a condition that tests whether the new value is an
interesting one.
Break conditions can have side effects, and may even call functions
in your program. This can be useful, for example, to activate functions
that log program progress, or to use your own print functions to format
special data structures. The effects are completely predictable unless
there is another enabled breakpoint at the same address. (In that
case, GDB might see the other breakpoint first and stop your program
without checking the condition of this one.) Note that breakpoint
commands are usually more convenient and flexible than break conditions
for the purpose of performing side effects when a breakpoint is reached
(*note Breakpoint command lists: Break Commands.).
Break conditions can be specified when a breakpoint is set, by using
`if' in the arguments to the `break' command. *Note Setting
breakpoints: Set Breaks. They can also be changed at any time with the
`condition' command.
You can also use the `if' keyword with the `watch' command. The
`catch' command does not recognize the `if' keyword; `condition' is the
only way to impose a further condition on a catchpoint.
`condition BNUM EXPRESSION'
Specify EXPRESSION as the break condition for breakpoint,
watchpoint, or catchpoint number BNUM. After you set a condition,
breakpoint BNUM stops your program only if the value of EXPRESSION
is true (nonzero, in C). When you use `condition', GDB checks
EXPRESSION immediately for syntactic correctness, and to determine
whether symbols in it have referents in the context of your
breakpoint. If EXPRESSION uses symbols not referenced in the
context of the breakpoint, GDB prints an error message:
No symbol "foo" in current context.
GDB does not actually evaluate EXPRESSION at the time the
`condition' command (or a command that sets a breakpoint with a
condition, like `break if ...') is given, however. *Note
Expressions: Expressions.
`condition BNUM'
Remove the condition from breakpoint number BNUM. It becomes an
ordinary unconditional breakpoint.
A special case of a breakpoint condition is to stop only when the
breakpoint has been reached a certain number of times. This is so
useful that there is a special way to do it, using the "ignore count"
of the breakpoint. Every breakpoint has an ignore count, which is an
integer. Most of the time, the ignore count is zero, and therefore has
no effect. But if your program reaches a breakpoint whose ignore count
is positive, then instead of stopping, it just decrements the ignore
count by one and continues. As a result, if the ignore count value is
N, the breakpoint does not stop the next N times your program reaches
it.
`ignore BNUM COUNT'
Set the ignore count of breakpoint number BNUM to COUNT. The next
COUNT times the breakpoint is reached, your program's execution
does not stop; other than to decrement the ignore count, GDB takes
no action.
To make the breakpoint stop the next time it is reached, specify a
count of zero.
When you use `continue' to resume execution of your program from a
breakpoint, you can specify an ignore count directly as an
argument to `continue', rather than using `ignore'. *Note
Continuing and stepping: Continuing and Stepping.
If a breakpoint has a positive ignore count and a condition, the
condition is not checked. Once the ignore count reaches zero, GDB
resumes checking the condition.
You could achieve the effect of the ignore count with a condition
such as `$foo-- <= 0' using a debugger convenience variable that
is decremented each time. *Note Convenience variables:
Convenience Vars.
Ignore counts apply to breakpoints, watchpoints, and catchpoints.
File: gdb.info, Node: Break Commands, Next: Breakpoint Menus, Prev: Conditions, Up: Breakpoints
5.1.7 Breakpoint command lists
------------------------------
You can give any breakpoint (or watchpoint or catchpoint) a series of
commands to execute when your program stops due to that breakpoint. For
example, you might want to print the values of certain expressions, or
enable other breakpoints.
`commands [BNUM]'
`... COMMAND-LIST ...'
`end'
Specify a list of commands for breakpoint number BNUM. The
commands themselves appear on the following lines. Type a line
containing just `end' to terminate the commands.
To remove all commands from a breakpoint, type `commands' and
follow it immediately with `end'; that is, give no commands.
With no BNUM argument, `commands' refers to the last breakpoint,
watchpoint, or catchpoint set (not to the breakpoint most recently
encountered).
Pressing as a means of repeating the last GDB command is
disabled within a COMMAND-LIST.
You can use breakpoint commands to start your program up again.
Simply use the `continue' command, or `step', or any other command that
resumes execution.
Any other commands in the command list, after a command that resumes
execution, are ignored. This is because any time you resume execution
(even with a simple `next' or `step'), you may encounter another
breakpoint--which could have its own command list, leading to
ambiguities about which list to execute.
If the first command you specify in a command list is `silent', the
usual message about stopping at a breakpoint is not printed. This may
be desirable for breakpoints that are to print a specific message and
then continue. If none of the remaining commands print anything, you
see no sign that the breakpoint was reached. `silent' is meaningful
only at the beginning of a breakpoint command list.
The commands `echo', `output', and `printf' allow you to print
precisely controlled output, and are often useful in silent
breakpoints. *Note Commands for controlled output: Output.
For example, here is how you could use breakpoint commands to print
the value of `x' at entry to `foo' whenever `x' is positive.
break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end
One application for breakpoint commands is to compensate for one bug
so you can test for another. Put a breakpoint just after the erroneous
line of code, give it a condition to detect the case in which something
erroneous has been done, and give it commands to assign correct values
to any variables that need them. End with the `continue' command so
that your program does not stop, and start with the `silent' command so
that no output is produced. Here is an example:
break 403
commands
silent
set x = y + 4
cont
end
File: gdb.info, Node: Breakpoint Menus, Next: Error in Breakpoints, Prev: Break Commands, Up: Breakpoints
5.1.8 Breakpoint menus
----------------------
Some programming languages (notably C++ and Objective-C) permit a
single function name to be defined several times, for application in
different contexts. This is called "overloading". When a function
name is overloaded, `break FUNCTION' is not enough to tell GDB where
you want a breakpoint. If you realize this is a problem, you can use
something like `break FUNCTION(TYPES)' to specify which particular
version of the function you want. Otherwise, GDB offers you a menu of
numbered choices for different possible breakpoints, and waits for your
selection with the prompt `>'. The first two options are always `[0]
cancel' and `[1] all'. Typing `1' sets a breakpoint at each definition
of FUNCTION, and typing `0' aborts the `break' command without setting
any new breakpoints.
For example, the following session excerpt shows an attempt to set a
breakpoint at the overloaded symbol `String::after'. We choose three
particular definitions of that function name:
(gdb) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] file:String.cc; line number:875
[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
> 2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the "delete" command to delete unwanted
breakpoints.
(gdb)
File: gdb.info, Node: Error in Breakpoints, Next: Breakpoint related warnings, Prev: Breakpoint Menus, Up: Breakpoints
5.1.9 "Cannot insert breakpoints"
---------------------------------
Under some operating systems, breakpoints cannot be used in a program if
any other process is running that program. In this situation,
attempting to run or continue a program with a breakpoint causes GDB to
print an error message:
Cannot insert breakpoints.
The same program may be running in another process.
When this happens, you have three ways to proceed:
1. Remove or disable the breakpoints, then continue.
2. Suspend GDB, and copy the file containing your program to a new
name. Resume GDB and use the `exec-file' command to specify that
GDB should run your program under that name. Then start your
program again.
3. Relink your program so that the text segment is nonsharable, using
the linker option `-N'. The operating system limitation may not
apply to nonsharable executables.
A similar message can be printed if you request too many active
hardware-assisted breakpoints and watchpoints:
Stopped; cannot insert breakpoints.
You may have requested too many hardware breakpoints and watchpoints.
This message is printed when you attempt to resume the program, since
only then GDB knows exactly how many hardware breakpoints and
watchpoints it needs to insert.
When this message is printed, you need to disable or remove some of
the hardware-assisted breakpoints and watchpoints, and then continue.
File: gdb.info, Node: Breakpoint related warnings, Prev: Error in Breakpoints, Up: Breakpoints
5.1.10 "Breakpoint address adjusted..."
---------------------------------------
Some processor architectures place constraints on the addresses at
which breakpoints may be placed. For architectures thus constrained,
GDB will attempt to adjust the breakpoint's address to comply with the
constraints dictated by the architecture.
One example of such an architecture is the Fujitsu FR-V. The FR-V is
a VLIW architecture in which a number of RISC-like instructions may be
bundled together for parallel execution. The FR-V architecture
constrains the location of a breakpoint instruction within such a
bundle to the instruction with the lowest address. GDB honors this
constraint by adjusting a breakpoint's address to the first in the
bundle.
It is not uncommon for optimized code to have bundles which contain
instructions from different source statements, thus it may happen that
a breakpoint's address will be adjusted from one source statement to
another. Since this adjustment may significantly alter GDB's
breakpoint related behavior from what the user expects, a warning is
printed when the breakpoint is first set and also when the breakpoint
is hit.
A warning like the one below is printed when setting a breakpoint
that's been subject to address adjustment:
warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
Such warnings are printed both for user settable and GDB's internal
breakpoints. If you see one of these warnings, you should verify that
a breakpoint set at the adjusted address will have the desired affect.
If not, the breakpoint in question may be removed and other breakpoints
may be set which will have the desired behavior. E.g., it may be
sufficient to place the breakpoint at a later instruction. A
conditional breakpoint may also be useful in some cases to prevent the
breakpoint from triggering too often.
GDB will also issue a warning when stopping at one of these adjusted
breakpoints:
warning: Breakpoint 1 address previously adjusted from 0x00010414
to 0x00010410.
When this warning is encountered, it may be too late to take remedial
action except in cases where the breakpoint is hit earlier or more
frequently than expected.
File: gdb.info, Node: Continuing and Stepping, Next: Signals, Prev: Breakpoints, Up: Stopping
5.2 Continuing and stepping
===========================
"Continuing" means resuming program execution until your program
completes normally. In contrast, "stepping" means executing just one
more "step" of your program, where "step" may mean either one line of
source code, or one machine instruction (depending on what particular
command you use). Either when continuing or when stepping, your
program may stop even sooner, due to a breakpoint or a signal. (If it
stops due to a signal, you may want to use `handle', or use `signal 0'
to resume execution. *Note Signals: Signals.)
`continue [IGNORE-COUNT]'
`c [IGNORE-COUNT]'
`fg [IGNORE-COUNT]'
Resume program execution, at the address where your program last
stopped; any breakpoints set at that address are bypassed. The
optional argument IGNORE-COUNT allows you to specify a further
number of times to ignore a breakpoint at this location; its
effect is like that of `ignore' (*note Break conditions:
Conditions.).
The argument IGNORE-COUNT is meaningful only when your program
stopped due to a breakpoint. At other times, the argument to
`continue' is ignored.
The synonyms `c' and `fg' (for "foreground", as the debugged
program is deemed to be the foreground program) are provided
purely for convenience, and have exactly the same behavior as
`continue'.
To resume execution at a different place, you can use `return'
(*note Returning from a function: Returning.) to go back to the calling
function; or `jump' (*note Continuing at a different address: Jumping.)
to go to an arbitrary location in your program.
A typical technique for using stepping is to set a breakpoint (*note
Breakpoints; watchpoints; and catchpoints: Breakpoints.) at the
beginning of the function or the section of your program where a problem
is believed to lie, run your program until it stops at that breakpoint,
and then step through the suspect area, examining the variables that are
interesting, until you see the problem happen.
`step'
Continue running your program until control reaches a different
source line, then stop it and return control to GDB. This command
is abbreviated `s'.
_Warning:_ If you use the `step' command while control is
within a function that was compiled without debugging
information, execution proceeds until control reaches a
function that does have debugging information. Likewise, it
will not step into a function which is compiled without
debugging information. To step through functions without
debugging information, use the `stepi' command, described
below.
The `step' command only stops at the first instruction of a source
line. This prevents the multiple stops that could otherwise occur
in `switch' statements, `for' loops, etc. `step' continues to
stop if a function that has debugging information is called within
the line. In other words, `step' _steps inside_ any functions
called within the line.
Also, the `step' command only enters a function if there is line
number information for the function. Otherwise it acts like the
`next' command. This avoids problems when using `cc -gl' on MIPS
machines. Previously, `step' entered subroutines if there was any
debugging information about the routine.
`step COUNT'
Continue running as in `step', but do so COUNT times. If a
breakpoint is reached, or a signal not related to stepping occurs
before COUNT steps, stepping stops right away.
`next [COUNT]'
Continue to the next source line in the current (innermost) stack
frame. This is similar to `step', but function calls that appear
within the line of code are executed without stopping. Execution
stops when control reaches a different line of code at the
original stack level that was executing when you gave the `next'
command. This command is abbreviated `n'.
An argument COUNT is a repeat count, as for `step'.
The `next' command only stops at the first instruction of a source
line. This prevents multiple stops that could otherwise occur in
`switch' statements, `for' loops, etc.
`set step-mode'
`set step-mode on'
The `set step-mode on' command causes the `step' command to stop
at the first instruction of a function which contains no debug line
information rather than stepping over it.
This is useful in cases where you may be interested in inspecting
the machine instructions of a function which has no symbolic info
and do not want GDB to automatically skip over this function.
`set step-mode off'
Causes the `step' command to step over any functions which
contains no debug information. This is the default.
`finish'
Continue running until just after function in the selected stack
frame returns. Print the returned value (if any).
Contrast this with the `return' command (*note Returning from a
function: Returning.).
`until'
`u'
Continue running until a source line past the current line, in the
current stack frame, is reached. This command is used to avoid
single stepping through a loop more than once. It is like the
`next' command, except that when `until' encounters a jump, it
automatically continues execution until the program counter is
greater than the address of the jump.
This means that when you reach the end of a loop after single
stepping though it, `until' makes your program continue execution
until it exits the loop. In contrast, a `next' command at the end
of a loop simply steps back to the beginning of the loop, which
forces you to step through the next iteration.
`until' always stops your program if it attempts to exit the
current stack frame.
`until' may produce somewhat counterintuitive results if the order
of machine code does not match the order of the source lines. For
example, in the following excerpt from a debugging session, the `f'
(`frame') command shows that execution is stopped at line `206';
yet when we use `until', we get to line `195':
(gdb) f
#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input();
(gdb) until
195 for ( ; argc > 0; NEXTARG) {
This happened because, for execution efficiency, the compiler had
generated code for the loop closure test at the end, rather than
the start, of the loop--even though the test in a C `for'-loop is
written before the body of the loop. The `until' command appeared
to step back to the beginning of the loop when it advanced to this
expression; however, it has not really gone to an earlier
statement--not in terms of the actual machine code.
`until' with no argument works by means of single instruction
stepping, and hence is slower than `until' with an argument.
`until LOCATION'
`u LOCATION'
Continue running your program until either the specified location
is reached, or the current stack frame returns. LOCATION is any of
the forms of argument acceptable to `break' (*note Setting
breakpoints: Set Breaks.). This form of the command uses
breakpoints, and hence is quicker than `until' without an
argument. The specified location is actually reached only if it
is in the current frame. This implies that `until' can be used to
skip over recursive function invocations. For instance in the
code below, if the current location is line `96', issuing `until
99' will execute the program up to line `99' in the same
invocation of factorial, i.e. after the inner invocations have
returned.
94 int factorial (int value)
95 {
96 if (value > 1) {
97 value *= factorial (value - 1);
98 }
99 return (value);
100 }
`advance LOCATION'
Continue running the program up to the given location. An
argument is required, anything of the same form as arguments for
the `break' command. Execution will also stop upon exit from the
current stack frame. This command is similar to `until', but
`advance' will not skip over recursive function calls, and the
target location doesn't have to be in the same frame as the
current one.
`stepi'
`stepi ARG'
`si'
Execute one machine instruction, then stop and return to the
debugger.
It is often useful to do `display/i $pc' when stepping by machine
instructions. This makes GDB automatically display the next
instruction to be executed, each time your program stops. *Note
Automatic display: Auto Display.
An argument is a repeat count, as in `step'.
`nexti'
`nexti ARG'
`ni'
Execute one machine instruction, but if it is a function call,
proceed until the function returns.
An argument is a repeat count, as in `next'.
File: gdb.info, Node: Signals, Next: Thread Stops, Prev: Continuing and Stepping, Up: Stopping
5.3 Signals
===========
A signal is an asynchronous event that can happen in a program. The
operating system defines the possible kinds of signals, and gives each
kind a name and a number. For example, in Unix `SIGINT' is the signal
a program gets when you type an interrupt character (often `C-c');
`SIGSEGV' is the signal a program gets from referencing a place in
memory far away from all the areas in use; `SIGALRM' occurs when the
alarm clock timer goes off (which happens only if your program has
requested an alarm).
Some signals, including `SIGALRM', are a normal part of the
functioning of your program. Others, such as `SIGSEGV', indicate
errors; these signals are "fatal" (they kill your program immediately)
if the program has not specified in advance some other way to handle
the signal. `SIGINT' does not indicate an error in your program, but
it is normally fatal so it can carry out the purpose of the interrupt:
to kill the program.
GDB has the ability to detect any occurrence of a signal in your
program. You can tell GDB in advance what to do for each kind of
signal.
Normally, GDB is set up to let the non-erroneous signals like
`SIGALRM' be silently passed to your program (so as not to interfere
with their role in the program's functioning) but to stop your program
immediately whenever an error signal happens. You can change these
settings with the `handle' command.
`info signals'
`info handle'
Print a table of all the kinds of signals and how GDB has been
told to handle each one. You can use this to see the signal
numbers of all the defined types of signals.
`info handle' is an alias for `info signals'.
`handle SIGNAL KEYWORDS...'
Change the way GDB handles signal SIGNAL. SIGNAL can be the
number of a signal or its name (with or without the `SIG' at the
beginning); a list of signal numbers of the form `LOW-HIGH'; or
the word `all', meaning all the known signals. The KEYWORDS say
what change to make.
The keywords allowed by the `handle' command can be abbreviated.
Their full names are:
`nostop'
GDB should not stop your program when this signal happens. It may
still print a message telling you that the signal has come in.
`stop'
GDB should stop your program when this signal happens. This
implies the `print' keyword as well.
`print'
GDB should print a message when this signal happens.
`noprint'
GDB should not mention the occurrence of the signal at all. This
implies the `nostop' keyword as well.
`pass'
`noignore'
GDB should allow your program to see this signal; your program can
handle the signal, or else it may terminate if the signal is fatal
and not handled. `pass' and `noignore' are synonyms.
`nopass'
`ignore'
GDB should not allow your program to see this signal. `nopass'
and `ignore' are synonyms.
When a signal stops your program, the signal is not visible to the
program until you continue. Your program sees the signal then, if
`pass' is in effect for the signal in question _at that time_. In
other words, after GDB reports a signal, you can use the `handle'
command with `pass' or `nopass' to control whether your program sees
that signal when you continue.
The default is set to `nostop', `noprint', `pass' for non-erroneous
signals such as `SIGALRM', `SIGWINCH' and `SIGCHLD', and to `stop',
`print', `pass' for the erroneous signals.
You can also use the `signal' command to prevent your program from
seeing a signal, or cause it to see a signal it normally would not see,
or to give it any signal at any time. For example, if your program
stopped due to some sort of memory reference error, you might store
correct values into the erroneous variables and continue, hoping to see
more execution; but your program would probably terminate immediately as
a result of the fatal signal once it saw the signal. To prevent this,
you can continue with `signal 0'. *Note Giving your program a signal:
Signaling.
File: gdb.info, Node: Thread Stops, Prev: Signals, Up: Stopping
5.4 Stopping and starting multi-thread programs
===============================================
When your program has multiple threads (*note Debugging programs with
multiple threads: Threads.), you can choose whether to set breakpoints
on all threads, or on a particular thread.
`break LINESPEC thread THREADNO'
`break LINESPEC thread THREADNO if ...'
LINESPEC specifies source lines; there are several ways of writing
them, but the effect is always to specify some source line.
Use the qualifier `thread THREADNO' with a breakpoint command to
specify that you only want GDB to stop the program when a
particular thread reaches this breakpoint. THREADNO is one of the
numeric thread identifiers assigned by GDB, shown in the first
column of the `info threads' display.
If you do not specify `thread THREADNO' when you set a breakpoint,
the breakpoint applies to _all_ threads of your program.
You can use the `thread' qualifier on conditional breakpoints as
well; in this case, place `thread THREADNO' before the breakpoint
condition, like this:
(gdb) break frik.c:13 thread 28 if bartab > lim
Whenever your program stops under GDB for any reason, _all_ threads
of execution stop, not just the current thread. This allows you to
examine the overall state of the program, including switching between
threads, without worrying that things may change underfoot.
There is an unfortunate side effect. If one thread stops for a
breakpoint, or for some other reason, and another thread is blocked in a
system call, then the system call may return prematurely. This is a
consequence of the interaction between multiple threads and the signals
that GDB uses to implement breakpoints and other events that stop
execution.
To handle this problem, your program should check the return value of
each system call and react appropriately. This is good programming
style anyways.
For example, do not write code like this:
sleep (10);
The call to `sleep' will return early if a different thread stops at
a breakpoint or for some other reason.
Instead, write this:
int unslept = 10;
while (unslept > 0)
unslept = sleep (unslept);
A system call is allowed to return early, so the system is still
conforming to its specification. But GDB does cause your
multi-threaded program to behave differently than it would without GDB.
Also, GDB uses internal breakpoints in the thread library to monitor
certain events such as thread creation and thread destruction. When
such an event happens, a system call in another thread may return
prematurely, even though your program does not appear to stop.
Conversely, whenever you restart the program, _all_ threads start
executing. _This is true even when single-stepping_ with commands like
`step' or `next'.
In particular, GDB cannot single-step all threads in lockstep.
Since thread scheduling is up to your debugging target's operating
system (not controlled by GDB), other threads may execute more than one
statement while the current thread completes a single step. Moreover,
in general other threads stop in the middle of a statement, rather than
at a clean statement boundary, when the program stops.
You might even find your program stopped in another thread after
continuing or even single-stepping. This happens whenever some other
thread runs into a breakpoint, a signal, or an exception before the
first thread completes whatever you requested.
On some OSes, you can lock the OS scheduler and thus allow only a
single thread to run.
`set scheduler-locking MODE'
Set the scheduler locking mode. If it is `off', then there is no
locking and any thread may run at any time. If `on', then only the
current thread may run when the inferior is resumed. The `step'
mode optimizes for single-stepping. It stops other threads from
"seizing the prompt" by preempting the current thread while you are
stepping. Other threads will only rarely (or never) get a chance
to run when you step. They are more likely to run when you `next'
over a function call, and they are completely free to run when you
use commands like `continue', `until', or `finish'. However,
unless another thread hits a breakpoint during its timeslice, they
will never steal the GDB prompt away from the thread that you are
debugging.
`show scheduler-locking'
Display the current scheduler locking mode.
File: gdb.info, Node: Stack, Next: Source, Prev: Stopping, Up: Top
6 Examining the Stack
*********************
When your program has stopped, the first thing you need to know is
where it stopped and how it got there.
Each time your program performs a function call, information about
the call is generated. That information includes the location of the
call in your program, the arguments of the call, and the local
variables of the function being called. The information is saved in a
block of data called a "stack frame". The stack frames are allocated
in a region of memory called the "call stack".
When your program stops, the GDB commands for examining the stack
allow you to see all of this information.
One of the stack frames is "selected" by GDB and many GDB commands
refer implicitly to the selected frame. In particular, whenever you
ask GDB for the value of a variable in your program, the value is found
in the selected frame. There are special GDB commands to select
whichever frame you are interested in. *Note Selecting a frame:
Selection.
When your program stops, GDB automatically selects the currently
executing frame and describes it briefly, similar to the `frame'
command (*note Information about a frame: Frame Info.).
* Menu:
* Frames:: Stack frames
* Backtrace:: Backtraces
* Selection:: Selecting a frame
* Frame Info:: Information on a frame
File: gdb.info, Node: Frames, Next: Backtrace, Up: Stack
6.1 Stack frames
================
The call stack is divided up into contiguous pieces called "stack
frames", or "frames" for short; each frame is the data associated with
one call to one function. The frame contains the arguments given to
the function, the function's local variables, and the address at which
the function is executing.
When your program is started, the stack has only one frame, that of
the function `main'. This is called the "initial" frame or the
"outermost" frame. Each time a function is called, a new frame is
made. Each time a function returns, the frame for that function
invocation is eliminated. If a function is recursive, there can be
many frames for the same function. The frame for the function in which
execution is actually occurring is called the "innermost" frame. This
is the most recently created of all the stack frames that still exist.
Inside your program, stack frames are identified by their addresses.
A stack frame consists of many bytes, each of which has its own
address; each kind of computer has a convention for choosing one byte
whose address serves as the address of the frame. Usually this address
is kept in a register called the "frame pointer register" while
execution is going on in that frame.
GDB assigns numbers to all existing stack frames, starting with zero
for the innermost frame, one for the frame that called it, and so on
upward. These numbers do not really exist in your program; they are
assigned by GDB to give you a way of designating stack frames in GDB
commands.
Some compilers provide a way to compile functions so that they
operate without stack frames. (For example, the gcc option
`-fomit-frame-pointer'
generates functions without a frame.) This is occasionally done
with heavily used library functions to save the frame setup time. GDB
has limited facilities for dealing with these function invocations. If
the innermost function invocation has no stack frame, GDB nevertheless
regards it as though it had a separate frame, which is numbered zero as
usual, allowing correct tracing of the function call chain. However,
GDB has no provision for frameless functions elsewhere in the stack.
`frame ARGS'
The `frame' command allows you to move from one stack frame to
another, and to print the stack frame you select. ARGS may be
either the address of the frame or the stack frame number.
Without an argument, `frame' prints the current stack frame.
`select-frame'
The `select-frame' command allows you to move from one stack frame
to another without printing the frame. This is the silent version
of `frame'.
File: gdb.info, Node: Backtrace, Next: Selection, Prev: Frames, Up: Stack
6.2 Backtraces
==============
A backtrace is a summary of how your program got where it is. It shows
one line per frame, for many frames, starting with the currently
executing frame (frame zero), followed by its caller (frame one), and
on up the stack.
`backtrace'
`bt'
Print a backtrace of the entire stack: one line per frame for all
frames in the stack.
You can stop the backtrace at any time by typing the system
interrupt character, normally `C-c'.
`backtrace N'
`bt N'
Similar, but print only the innermost N frames.
`backtrace -N'
`bt -N'
Similar, but print only the outermost N frames.
The names `where' and `info stack' (abbreviated `info s') are
additional aliases for `backtrace'.
Each line in the backtrace shows the frame number and the function
name. The program counter value is also shown--unless you use `set
print address off'. The backtrace also shows the source file name and
line number, as well as the arguments to the function. The program
counter value is omitted if it is at the beginning of the code for that
line number.
Here is an example of a backtrace. It was made with the command `bt
3', so it shows the innermost three frames.
#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
at builtin.c:993
#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
at macro.c:71
(More stack frames follow...)
The display for frame zero does not begin with a program counter value,
indicating that your program has stopped at the beginning of the code
for line `993' of `builtin.c'.
Most programs have a standard user entry point--a place where system
libraries and startup code transition into user code. For C this is
`main'. When GDB finds the entry function in a backtrace it will
terminate the backtrace, to avoid tracing into highly system-specific
(and generally uninteresting) code.
If you need to examine the startup code, or limit the number of
levels in a backtrace, you can change this behavior:
`set backtrace past-main'
`set backtrace past-main on'
Backtraces will continue past the user entry point.
`set backtrace past-main off'
Backtraces will stop when they encounter the user entry point.
This is the default.
`show backtrace past-main'
Display the current user entry point backtrace policy.
`set backtrace limit N'
`set backtrace limit 0'
Limit the backtrace to N levels. A value of zero means unlimited.
`show backtrace limit'
Display the current limit on backtrace levels.
File: gdb.info, Node: Selection, Next: Frame Info, Prev: Backtrace, Up: Stack
6.3 Selecting a frame
=====================
Most commands for examining the stack and other data in your program
work on whichever stack frame is selected at the moment. Here are the
commands for selecting a stack frame; all of them finish by printing a
brief description of the stack frame just selected.
`frame N'
`f N'
Select frame number N. Recall that frame zero is the innermost
(currently executing) frame, frame one is the frame that called the
innermost one, and so on. The highest-numbered frame is the one
for `main'.
`frame ADDR'
`f ADDR'
Select the frame at address ADDR. This is useful mainly if the
chaining of stack frames has been damaged by a bug, making it
impossible for GDB to assign numbers properly to all frames. In
addition, this can be useful when your program has multiple stacks
and switches between them.
On the SPARC architecture, `frame' needs two addresses to select
an arbitrary frame: a frame pointer and a stack pointer.
On the MIPS and Alpha architecture, it needs two addresses: a stack
pointer and a program counter.
On the 29k architecture, it needs three addresses: a register stack
pointer, a program counter, and a memory stack pointer.
`up N'
Move N frames up the stack. For positive numbers N, this advances
toward the outermost frame, to higher frame numbers, to frames
that have existed longer. N defaults to one.
`down N'
Move N frames down the stack. For positive numbers N, this
advances toward the innermost frame, to lower frame numbers, to
frames that were created more recently. N defaults to one. You
may abbreviate `down' as `do'.
All of these commands end by printing two lines of output describing
the frame. The first line shows the frame number, the function name,
the arguments, and the source file and line number of execution in that
frame. The second line shows the text of that source line.
For example:
(gdb) up
#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
at env.c:10
10 read_input_file (argv[i]);
After such a printout, the `list' command with no arguments prints
ten lines centered on the point of execution in the frame. You can
also edit the program at the point of execution with your favorite
editing program by typing `edit'. *Note Printing source lines: List,
for details.
`up-silently N'
`down-silently N'
These two commands are variants of `up' and `down', respectively;
they differ in that they do their work silently, without causing
display of the new frame. They are intended primarily for use in
GDB command scripts, where the output might be unnecessary and
distracting.
File: gdb.info, Node: Frame Info, Prev: Selection, Up: Stack
6.4 Information about a frame
=============================
There are several other commands to print information about the selected
stack frame.
`frame'
`f'
When used without any argument, this command does not change which
frame is selected, but prints a brief description of the currently
selected stack frame. It can be abbreviated `f'. With an
argument, this command is used to select a stack frame. *Note
Selecting a frame: Selection.
`info frame'
`info f'
This command prints a verbose description of the selected stack
frame, including:
* the address of the frame
* the address of the next frame down (called by this frame)
* the address of the next frame up (caller of this frame)
* the language in which the source code corresponding to this
frame is written
* the address of the frame's arguments
* the address of the frame's local variables
* the program counter saved in it (the address of execution in
the caller frame)
* which registers were saved in the frame
The verbose description is useful when something has gone wrong
that has made the stack format fail to fit the usual conventions.
`info frame ADDR'
`info f ADDR'
Print a verbose description of the frame at address ADDR, without
selecting that frame. The selected frame remains unchanged by this
command. This requires the same kind of address (more than one
for some architectures) that you specify in the `frame' command.
*Note Selecting a frame: Selection.
`info args'
Print the arguments of the selected frame, each on a separate line.
`info locals'
Print the local variables of the selected frame, each on a separate
line. These are all variables (declared either static or
automatic) accessible at the point of execution of the selected
frame.
`info catch'
Print a list of all the exception handlers that are active in the
current stack frame at the current point of execution. To see
other exception handlers, visit the associated frame (using the
`up', `down', or `frame' commands); then type `info catch'. *Note
Setting catchpoints: Set Catchpoints.
File: gdb.info, Node: Source, Next: Data, Prev: Stack, Up: Top
7 Examining Source Files
************************
GDB can print parts of your program's source, since the debugging
information recorded in the program tells GDB what source files were
used to build it. When your program stops, GDB spontaneously prints
the line where it stopped. Likewise, when you select a stack frame
(*note Selecting a frame: Selection.), GDB prints the line where
execution in that frame has stopped. You can print other portions of
source files by explicit command.
If you use GDB through its GNU Emacs interface, you may prefer to
use Emacs facilities to view source; see *Note Using GDB under GNU
Emacs: Emacs.
* Menu:
* List:: Printing source lines
* Edit:: Editing source files
* Search:: Searching source files
* Source Path:: Specifying source directories
* Machine Code:: Source and machine code
File: gdb.info, Node: List, Next: Edit, Up: Source
7.1 Printing source lines
=========================
To print lines from a source file, use the `list' command (abbreviated
`l'). By default, ten lines are printed. There are several ways to
specify what part of the file you want to print.
Here are the forms of the `list' command most commonly used:
`list LINENUM'
Print lines centered around line number LINENUM in the current
source file.
`list FUNCTION'
Print lines centered around the beginning of function FUNCTION.
`list'
Print more lines. If the last lines printed were printed with a
`list' command, this prints lines following the last lines
printed; however, if the last line printed was a solitary line
printed as part of displaying a stack frame (*note Examining the
Stack: Stack.), this prints lines centered around that line.
`list -'
Print lines just before the lines last printed.
By default, GDB prints ten source lines with any of these forms of
the `list' command. You can change this using `set listsize':
`set listsize COUNT'
Make the `list' command display COUNT source lines (unless the
`list' argument explicitly specifies some other number).
`show listsize'
Display the number of lines that `list' prints.
Repeating a `list' command with discards the argument, so it
is equivalent to typing just `list'. This is more useful than listing
the same lines again. An exception is made for an argument of `-';
that argument is preserved in repetition so that each repetition moves
up in the source file.
In general, the `list' command expects you to supply zero, one or two
"linespecs". Linespecs specify source lines; there are several ways of
writing them, but the effect is always to specify some source line.
Here is a complete description of the possible arguments for `list':
`list LINESPEC'
Print lines centered around the line specified by LINESPEC.
`list FIRST,LAST'
Print lines from FIRST to LAST. Both arguments are linespecs.
`list ,LAST'
Print lines ending with LAST.
`list FIRST,'
Print lines starting with FIRST.
`list +'
Print lines just after the lines last printed.
`list -'
Print lines just before the lines last printed.
`list'
As described in the preceding table.
Here are the ways of specifying a single source line--all the kinds
of linespec.
`NUMBER'
Specifies line NUMBER of the current source file. When a `list'
command has two linespecs, this refers to the same source file as
the first linespec.
`+OFFSET'
Specifies the line OFFSET lines after the last line printed. When
used as the second linespec in a `list' command that has two, this
specifies the line OFFSET lines down from the first linespec.
`-OFFSET'
Specifies the line OFFSET lines before the last line printed.
`FILENAME:NUMBER'
Specifies line NUMBER in the source file FILENAME.
`FUNCTION'
Specifies the line that begins the body of the function FUNCTION.
For example: in C, this is the line with the open brace.
`FILENAME:FUNCTION'
Specifies the line of the open-brace that begins the body of the
function FUNCTION in the file FILENAME. You only need the file
name with a function name to avoid ambiguity when there are
identically named functions in different source files.
`*ADDRESS'
Specifies the line containing the program address ADDRESS.
ADDRESS may be any expression.
File: gdb.info, Node: Edit, Next: Search, Prev: List, Up: Source
7.2 Editing source files
========================
To edit the lines in a source file, use the `edit' command. The
editing program of your choice is invoked with the current line set to
the active line in the program. Alternatively, there are several ways
to specify what part of the file you want to print if you want to see
other parts of the program.
Here are the forms of the `edit' command most commonly used:
`edit'
Edit the current source file at the active line number in the
program.
`edit NUMBER'
Edit the current source file with NUMBER as the active line number.
`edit FUNCTION'
Edit the file containing FUNCTION at the beginning of its
definition.
`edit FILENAME:NUMBER'
Specifies line NUMBER in the source file FILENAME.
`edit FILENAME:FUNCTION'
Specifies the line that begins the body of the function FUNCTION
in the file FILENAME. You only need the file name with a function
name to avoid ambiguity when there are identically named functions
in different source files.
`edit *ADDRESS'
Specifies the line containing the program address ADDRESS.
ADDRESS may be any expression.
7.2.1 Choosing your editor
--------------------------
You can customize GDB to use any editor you want (1). By default, it
is `/bin/ex', but you can change this by setting the environment
variable `EDITOR' before using GDB. For example, to configure GDB to
use the `vi' editor, you could use these commands with the `sh' shell:
EDITOR=/usr/bin/vi
export EDITOR
gdb ...
or in the `csh' shell,
setenv EDITOR /usr/bin/vi
gdb ...
---------- Footnotes ----------
(1) The only restriction is that your editor (say `ex'), recognizes
the following command-line syntax:
ex +NUMBER file
The optional numeric value +NUMBER specifies the number of the line
in the file where to start editing.
File: gdb.info, Node: Search, Next: Source Path, Prev: Edit, Up: Source
7.3 Searching source files
==========================
There are two commands for searching through the current source file
for a regular expression.
`forward-search REGEXP'
`search REGEXP'
The command `forward-search REGEXP' checks each line, starting
with the one following the last line listed, for a match for
REGEXP. It lists the line that is found. You can use the synonym
`search REGEXP' or abbreviate the command name as `fo'.
`reverse-search REGEXP'
The command `reverse-search REGEXP' checks each line, starting
with the one before the last line listed and going backward, for a
match for REGEXP. It lists the line that is found. You can
abbreviate this command as `rev'.
File: gdb.info, Node: Source Path, Next: Machine Code, Prev: Search, Up: Source
7.4 Specifying source directories
=================================
Executable programs sometimes do not record the directories of the
source files from which they were compiled, just the names. Even when
they do, the directories could be moved between the compilation and
your debugging session. GDB has a list of directories to search for
source files; this is called the "source path". Each time GDB wants a
source file, it tries all the directories in the list, in the order
they are present in the list, until it finds a file with the desired
name.
For example, suppose an executable references the file
`/usr/src/foo-1.0/lib/foo.c', and our source path is `/mnt/cross'. The
file is first looked up literally; if this fails,
`/mnt/cross/usr/src/foo-1.0/lib/foo.c' is tried; if this fails,
`/mnt/cross/foo.c' is opened; if this fails, an error message is
printed. GDB does not look up the parts of the source file name, such
as `/mnt/cross/src/foo-1.0/lib/foo.c'. Likewise, the subdirectories of
the source path are not searched: if the source path is `/mnt/cross',
and the binary refers to `foo.c', GDB would not find it under
`/mnt/cross/usr/src/foo-1.0/lib'.
Plain file names, relative file names with leading directories, file
names containing dots, etc. are all treated as described above; for
instance, if the source path is `/mnt/cross', and the source file is
recorded as `../lib/foo.c', GDB would first try `../lib/foo.c', then
`/mnt/cross/../lib/foo.c', and after that--`/mnt/cross/foo.c'.
Note that the executable search path is _not_ used to locate the
source files. Neither is the current working directory, unless it
happens to be in the source path.
Whenever you reset or rearrange the source path, GDB clears out any
information it has cached about where source files are found and where
each line is in the file.
When you start GDB, its source path includes only `cdir' and `cwd',
in that order. To add other directories, use the `directory' command.
`directory DIRNAME ...'
`dir DIRNAME ...'
Add directory DIRNAME to the front of the source path. Several
directory names may be given to this command, separated by `:'
(`;' on MS-DOS and MS-Windows, where `:' usually appears as part
of absolute file names) or whitespace. You may specify a
directory that is already in the source path; this moves it
forward, so GDB searches it sooner.
You can use the string `$cdir' to refer to the compilation
directory (if one is recorded), and `$cwd' to refer to the current
working directory. `$cwd' is not the same as `.'--the former
tracks the current working directory as it changes during your GDB
session, while the latter is immediately expanded to the current
directory at the time you add an entry to the source path.
`directory'
Reset the source path to empty again. This requires confirmation.
`show directories'
Print the source path: show which directories it contains.
If your source path is cluttered with directories that are no longer
of interest, GDB may sometimes cause confusion by finding the wrong
versions of source. You can correct the situation as follows:
1. Use `directory' with no argument to reset the source path to empty.
2. Use `directory' with suitable arguments to reinstall the
directories you want in the source path. You can add all the
directories in one command.
File: gdb.info, Node: Machine Code, Prev: Source Path, Up: Source
7.5 Source and machine code
===========================
You can use the command `info line' to map source lines to program
addresses (and vice versa), and the command `disassemble' to display a
range of addresses as machine instructions. When run under GNU Emacs
mode, the `info line' command causes the arrow to point to the line
specified. Also, `info line' prints addresses in symbolic form as well
as hex.
`info line LINESPEC'
Print the starting and ending addresses of the compiled code for
source line LINESPEC. You can specify source lines in any of the
ways understood by the `list' command (*note Printing source
lines: List.).
For example, we can use `info line' to discover the location of the
object code for the first line of function `m4_changequote':
(gdb) info line m4_changequote
Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
We can also inquire (using `*ADDR' as the form for LINESPEC) what
source line covers a particular address:
(gdb) info line *0x63ff
Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
After `info line', the default address for the `x' command is
changed to the starting address of the line, so that `x/i' is
sufficient to begin examining the machine code (*note Examining memory:
Memory.). Also, this address is saved as the value of the convenience
variable `$_' (*note Convenience variables: Convenience Vars.).
`disassemble'
This specialized command dumps a range of memory as machine
instructions. The default memory range is the function
surrounding the program counter of the selected frame. A single
argument to this command is a program counter value; GDB dumps the
function surrounding this value. Two arguments specify a range of
addresses (first inclusive, second exclusive) to dump.
The following example shows the disassembly of a range of addresses
of HP PA-RISC 2.0 code:
(gdb) disas 0x32c4 0x32e4
Dump of assembler code from 0x32c4 to 0x32e4:
0x32c4 : addil 0,dp
0x32c8 : ldw 0x22c(sr0,r1),r26
0x32cc : ldil 0x3000,r31
0x32d0 : ble 0x3f8(sr4,r31)
0x32d4 : ldo 0(r31),rp
0x32d8 : addil -0x800,dp
0x32dc : ldo 0x588(r1),r26
0x32e0 : ldil 0x3000,r31
End of assembler dump.
Some architectures have more than one commonly-used set of
instruction mnemonics or other syntax.
`set disassembly-flavor INSTRUCTION-SET'
Select the instruction set to use when disassembling the program
via the `disassemble' or `x/i' commands.
Currently this command is only defined for the Intel x86 family.
You can set INSTRUCTION-SET to either `intel' or `att'. The
default is `att', the AT&T flavor used by default by Unix
assemblers for x86-based targets.
File: gdb.info, Node: Data, Next: Macros, Prev: Source, Up: Top
8 Examining Data
****************
The usual way to examine data in your program is with the `print'
command (abbreviated `p'), or its synonym `inspect'. It evaluates and
prints the value of an expression of the language your program is
written in (*note Using GDB with Different Languages: Languages.).
`print EXPR'
`print /F EXPR'
EXPR is an expression (in the source language). By default the
value of EXPR is printed in a format appropriate to its data type;
you can choose a different format by specifying `/F', where F is a
letter specifying the format; see *Note Output formats: Output
Formats.
`print'
`print /F'
If you omit EXPR, GDB displays the last value again (from the
"value history"; *note Value history: Value History.). This
allows you to conveniently inspect the same value in an
alternative format.
A more low-level way of examining data is with the `x' command. It
examines data in memory at a specified address and prints it in a
specified format. *Note Examining memory: Memory.
If you are interested in information about types, or about how the
fields of a struct or a class are declared, use the `ptype EXP' command
rather than `print'. *Note Examining the Symbol Table: Symbols.
* Menu:
* Expressions:: Expressions
* Variables:: Program variables
* Arrays:: Artificial arrays
* Output Formats:: Output formats
* Memory:: Examining memory
* Auto Display:: Automatic display
* Print Settings:: Print settings
* Value History:: Value history
* Convenience Vars:: Convenience variables
* Registers:: Registers
* Floating Point Hardware:: Floating point hardware
* Vector Unit:: Vector Unit
* Auxiliary Vector:: Auxiliary data provided by operating system
* Memory Region Attributes:: Memory region attributes
* Dump/Restore Files:: Copy between memory and a file
* Character Sets:: Debugging programs that use a different
character set than GDB does
File: gdb.info, Node: Expressions, Next: Variables, Up: Data
8.1 Expressions
===============
`print' and many other GDB commands accept an expression and compute
its value. Any kind of constant, variable or operator defined by the
programming language you are using is valid in an expression in GDB.
This includes conditional expressions, function calls, casts, and
string constants. It also includes preprocessor macros, if you
compiled your program to include this information; see *Note
Compilation::.
GDB supports array constants in expressions input by the user. The
syntax is {ELEMENT, ELEMENT...}. For example, you can use the command
`print {1, 2, 3}' to build up an array in memory that is `malloc'ed in
the target program.
Because C is so widespread, most of the expressions shown in
examples in this manual are in C. *Note Using GDB with Different
Languages: Languages, for information on how to use expressions in other
languages.
In this section, we discuss operators that you can use in GDB
expressions regardless of your programming language.
Casts are supported in all languages, not just in C, because it is so
useful to cast a number into a pointer in order to examine a structure
at that address in memory.
GDB supports these operators, in addition to those common to
programming languages:
`@'
`@' is a binary operator for treating parts of memory as arrays.
*Note Artificial arrays: Arrays, for more information.
`::'
`::' allows you to specify a variable in terms of the file or
function where it is defined. *Note Program variables: Variables.
`{TYPE} ADDR'
Refers to an object of type TYPE stored at address ADDR in memory.
ADDR may be any expression whose value is an integer or pointer
(but parentheses are required around binary operators, just as in
a cast). This construct is allowed regardless of what kind of
data is normally supposed to reside at ADDR.
File: gdb.info, Node: Variables, Next: Arrays, Prev: Expressions, Up: Data
8.2 Program variables
=====================
The most common kind of expression to use is the name of a variable in
your program.
Variables in expressions are understood in the selected stack frame
(*note Selecting a frame: Selection.); they must be either:
* global (or file-static)
or
* visible according to the scope rules of the programming language
from the point of execution in that frame
This means that in the function
foo (a)
int a;
{
bar (a);
{
int b = test ();
bar (b);
}
}
you can examine and use the variable `a' whenever your program is
executing within the function `foo', but you can only use or examine
the variable `b' while your program is executing inside the block where
`b' is declared.
There is an exception: you can refer to a variable or function whose
scope is a single source file even if the current execution point is not
in this file. But it is possible to have more than one such variable or
function with the same name (in different source files). If that
happens, referring to that name has unpredictable effects. If you wish,
you can specify a static variable in a particular function or file,
using the colon-colon (`::') notation:
FILE::VARIABLE
FUNCTION::VARIABLE
Here FILE or FUNCTION is the name of the context for the static
VARIABLE. In the case of file names, you can use quotes to make sure
GDB parses the file name as a single word--for example, to print a
global value of `x' defined in `f2.c':
(gdb) p 'f2.c'::x
This use of `::' is very rarely in conflict with the very similar
use of the same notation in C++. GDB also supports use of the C++
scope resolution operator in GDB expressions.
_Warning:_ Occasionally, a local variable may appear to have the
wrong value at certain points in a function--just after entry to a
new scope, and just before exit.
You may see this problem when you are stepping by machine
instructions. This is because, on most machines, it takes more than
one instruction to set up a stack frame (including local variable
definitions); if you are stepping by machine instructions, variables
may appear to have the wrong values until the stack frame is completely
built. On exit, it usually also takes more than one machine
instruction to destroy a stack frame; after you begin stepping through
that group of instructions, local variable definitions may be gone.
This may also happen when the compiler does significant
optimizations. To be sure of always seeing accurate values, turn off
all optimization when compiling.
Another possible effect of compiler optimizations is to optimize
unused variables out of existence, or assign variables to registers (as
opposed to memory addresses). Depending on the support for such cases
offered by the debug info format used by the compiler, GDB might not be
able to display values for such local variables. If that happens, GDB
will print a message like this:
No symbol "foo" in current context.
To solve such problems, either recompile without optimizations, or
use a different debug info format, if the compiler supports several such
formats. For example, GCC, the GNU C/C++ compiler, usually supports
the `-gstabs+' option. `-gstabs+' produces debug info in a format that
is superior to formats such as COFF. You may be able to use DWARF 2
(`-gdwarf-2'), which is also an effective form for debug info. *Note
Options for Debugging Your Program or GNU CC: (gcc.info)Debugging
Options. *Note Debugging C++: C, for more info about debug info formats
that are best suited to C++ programs.
File: gdb.info, Node: Arrays, Next: Output Formats, Prev: Variables, Up: Data
8.3 Artificial arrays
=====================
It is often useful to print out several successive objects of the same
type in memory; a section of an array, or an array of dynamically
determined size for which only a pointer exists in the program.
You can do this by referring to a contiguous span of memory as an
"artificial array", using the binary operator `@'. The left operand of
`@' should be the first element of the desired array and be an
individual object. The right operand should be the desired length of
the array. The result is an array value whose elements are all of the
type of the left argument. The first element is actually the left
argument; the second element comes from bytes of memory immediately
following those that hold the first element, and so on. Here is an
example. If a program says
int *array = (int *) malloc (len * sizeof (int));
you can print the contents of `array' with
p *array@len
The left operand of `@' must reside in memory. Array values made
with `@' in this way behave just like other arrays in terms of
subscripting, and are coerced to pointers when used in expressions.
Artificial arrays most often appear in expressions via the value history
(*note Value history: Value History.), after printing one out.
Another way to create an artificial array is to use a cast. This
re-interprets a value as if it were an array. The value need not be in
memory:
(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}
As a convenience, if you leave the array length out (as in
`(TYPE[])VALUE') GDB calculates the size to fill the value (as
`sizeof(VALUE)/sizeof(TYPE)':
(gdb) p/x (short[])0x12345678
$2 = {0x1234, 0x5678}
Sometimes the artificial array mechanism is not quite enough; in
moderately complex data structures, the elements of interest may not
actually be adjacent--for example, if you are interested in the values
of pointers in an array. One useful work-around in this situation is
to use a convenience variable (*note Convenience variables: Convenience
Vars.) as a counter in an expression that prints the first interesting
value, and then repeat that expression via . For instance,
suppose you have an array `dtab' of pointers to structures, and you are
interested in the values of a field `fv' in each structure. Here is an
example of what you might type:
set $i = 0
p dtab[$i++]->fv
...
File: gdb.info, Node: Output Formats, Next: Memory, Prev: Arrays, Up: Data
8.4 Output formats
==================
By default, GDB prints a value according to its data type. Sometimes
this is not what you want. For example, you might want to print a
number in hex, or a pointer in decimal. Or you might want to view data
in memory at a certain address as a character string or as an
instruction. To do these things, specify an "output format" when you
print a value.
The simplest use of output formats is to say how to print a value
already computed. This is done by starting the arguments of the
`print' command with a slash and a format letter. The format letters
supported are:
`x'
Regard the bits of the value as an integer, and print the integer
in hexadecimal.
`d'
Print as integer in signed decimal.
`u'
Print as integer in unsigned decimal.
`o'
Print as integer in octal.
`t'
Print as integer in binary. The letter `t' stands for "two". (1)
`a'
Print as an address, both absolute in hexadecimal and as an offset
from the nearest preceding symbol. You can use this format used
to discover where (in what function) an unknown address is located:
(gdb) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>
The command `info symbol 0x54320' yields similar results. *Note
info symbol: Symbols.
`c'
Regard as an integer and print it as a character constant.
`f'
Regard the bits of the value as a floating point number and print
using typical floating point syntax.
For example, to print the program counter in hex (*note
Registers::), type
p/x $pc
Note that no space is required before the slash; this is because command
names in GDB cannot contain a slash.
To reprint the last value in the value history with a different
format, you can use the `print' command with just a format and no
expression. For example, `p/x' reprints the last value in hex.
---------- Footnotes ----------
(1) `b' cannot be used because these format letters are also used
with the `x' command, where `b' stands for "byte"; see *Note Examining
memory: Memory.
File: gdb.info, Node: Memory, Next: Auto Display, Prev: Output Formats, Up: Data
8.5 Examining memory
====================
You can use the command `x' (for "examine") to examine memory in any of
several formats, independently of your program's data types.
`x/NFU ADDR'
`x ADDR'
`x'
Use the `x' command to examine memory.
N, F, and U are all optional parameters that specify how much memory
to display and how to format it; ADDR is an expression giving the
address where you want to start displaying memory. If you use defaults
for NFU, you need not type the slash `/'. Several commands set
convenient defaults for ADDR.
N, the repeat count
The repeat count is a decimal integer; the default is 1. It
specifies how much memory (counting by units U) to display.
F, the display format
The display format is one of the formats used by `print', `s'
(null-terminated string), or `i' (machine instruction). The
default is `x' (hexadecimal) initially. The default changes each
time you use either `x' or `print'.
U, the unit size
The unit size is any of
`b'
Bytes.
`h'
Halfwords (two bytes).
`w'
Words (four bytes). This is the initial default.
`g'
Giant words (eight bytes).
Each time you specify a unit size with `x', that size becomes the
default unit the next time you use `x'. (For the `s' and `i'
formats, the unit size is ignored and is normally not written.)
ADDR, starting display address
ADDR is the address where you want GDB to begin displaying memory.
The expression need not have a pointer value (though it may); it
is always interpreted as an integer address of a byte of memory.
*Note Expressions: Expressions, for more information on
expressions. The default for ADDR is usually just after the last
address examined--but several other commands also set the default
address: `info breakpoints' (to the address of the last breakpoint
listed), `info line' (to the starting address of a line), and
`print' (if you use it to display a value from memory).
For example, `x/3uh 0x54320' is a request to display three halfwords
(`h') of memory, formatted as unsigned decimal integers (`u'), starting
at address `0x54320'. `x/4xw $sp' prints the four words (`w') of
memory above the stack pointer (here, `$sp'; *note Registers:
Registers.) in hexadecimal (`x').
Since the letters indicating unit sizes are all distinct from the
letters specifying output formats, you do not have to remember whether
unit size or format comes first; either order works. The output
specifications `4xw' and `4wx' mean exactly the same thing. (However,
the count N must come first; `wx4' does not work.)
Even though the unit size U is ignored for the formats `s' and `i',
you might still want to use a count N; for example, `3i' specifies that
you want to see three machine instructions, including any operands.
The command `disassemble' gives an alternative way of inspecting
machine instructions; see *Note Source and machine code: Machine Code.
All the defaults for the arguments to `x' are designed to make it
easy to continue scanning memory with minimal specifications each time
you use `x'. For example, after you have inspected three machine
instructions with `x/3i ADDR', you can inspect the next seven with just
`x/7'. If you use to repeat the `x' command, the repeat count N
is used again; the other arguments default as for successive uses of
`x'.
The addresses and contents printed by the `x' command are not saved
in the value history because there is often too much of them and they
would get in the way. Instead, GDB makes these values available for
subsequent use in expressions as values of the convenience variables
`$_' and `$__'. After an `x' command, the last address examined is
available for use in expressions in the convenience variable `$_'. The
contents of that address, as examined, are available in the convenience
variable `$__'.
If the `x' command has a repeat count, the address and contents saved
are from the last memory unit printed; this is not the same as the last
address printed if several units were printed on the last line of
output.
File: gdb.info, Node: Auto Display, Next: Print Settings, Prev: Memory, Up: Data
8.6 Automatic display
=====================
If you find that you want to print the value of an expression frequently
(to see how it changes), you might want to add it to the "automatic
display list" so that GDB prints its value each time your program stops.
Each expression added to the list is given a number to identify it; to
remove an expression from the list, you specify that number. The
automatic display looks like this:
2: foo = 38
3: bar[5] = (struct hack *) 0x3804
This display shows item numbers, expressions and their current values.
As with displays you request manually using `x' or `print', you can
specify the output format you prefer; in fact, `display' decides
whether to use `print' or `x' depending on how elaborate your format
specification is--it uses `x' if you specify a unit size, or one of the
two formats (`i' and `s') that are only supported by `x'; otherwise it
uses `print'.
`display EXPR'
Add the expression EXPR to the list of expressions to display each
time your program stops. *Note Expressions: Expressions.
`display' does not repeat if you press again after using it.
`display/FMT EXPR'
For FMT specifying only a display format and not a size or count,
add the expression EXPR to the auto-display list but arrange to
display it each time in the specified format FMT. *Note Output
formats: Output Formats.
`display/FMT ADDR'
For FMT `i' or `s', or including a unit-size or a number of units,
add the expression ADDR as a memory address to be examined each
time your program stops. Examining means in effect doing `x/FMT
ADDR'. *Note Examining memory: Memory.
For example, `display/i $pc' can be helpful, to see the machine
instruction about to be executed each time execution stops (`$pc' is a
common name for the program counter; *note Registers: Registers.).
`undisplay DNUMS...'
`delete display DNUMS...'
Remove item numbers DNUMS from the list of expressions to display.
`undisplay' does not repeat if you press after using it.
(Otherwise you would just get the error `No display number ...'.)
`disable display DNUMS...'
Disable the display of item numbers DNUMS. A disabled display
item is not printed automatically, but is not forgotten. It may be
enabled again later.
`enable display DNUMS...'
Enable display of item numbers DNUMS. It becomes effective once
again in auto display of its expression, until you specify
otherwise.
`display'
Display the current values of the expressions on the list, just as
is done when your program stops.
`info display'
Print the list of expressions previously set up to display
automatically, each one with its item number, but without showing
the values. This includes disabled expressions, which are marked
as such. It also includes expressions which would not be
displayed right now because they refer to automatic variables not
currently available.
If a display expression refers to local variables, then it does not
make sense outside the lexical context for which it was set up. Such an
expression is disabled when execution enters a context where one of its
variables is not defined. For example, if you give the command
`display last_char' while inside a function with an argument
`last_char', GDB displays this argument while your program continues to
stop inside that function. When it stops elsewhere--where there is no
variable `last_char'--the display is disabled automatically. The next
time your program stops where `last_char' is meaningful, you can enable
the display expression once again.
File: gdb.info, Node: Print Settings, Next: Value History, Prev: Auto Display, Up: Data
8.7 Print settings
==================
GDB provides the following ways to control how arrays, structures, and
symbols are printed.
These settings are useful for debugging programs in any language:
`set print address'
`set print address on'
GDB prints memory addresses showing the location of stack traces,
structure values, pointer values, breakpoints, and so forth, even
when it also displays the contents of those addresses. The default
is `on'. For example, this is what a stack frame display looks
like with `set print address on':
(gdb) f
#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
at input.c:530
530 if (lquote != def_lquote)
`set print address off'
Do not print addresses when displaying their contents. For
example, this is the same stack frame displayed with `set print
address off':
(gdb) set print addr off
(gdb) f
#0 set_quotes (lq="<<", rq=">>") at input.c:530
530 if (lquote != def_lquote)
You can use `set print address off' to eliminate all machine
dependent displays from the GDB interface. For example, with
`print address off', you should get the same text for backtraces on
all machines--whether or not they involve pointer arguments.
`show print address'
Show whether or not addresses are to be printed.
When GDB prints a symbolic address, it normally prints the closest
earlier symbol plus an offset. If that symbol does not uniquely
identify the address (for example, it is a name whose scope is a single
source file), you may need to clarify. One way to do this is with
`info line', for example `info line *0x4537'. Alternately, you can set
GDB to print the source file and line number when it prints a symbolic
address:
`set print symbol-filename on'
Tell GDB to print the source file name and line number of a symbol
in the symbolic form of an address.
`set print symbol-filename off'
Do not print source file name and line number of a symbol. This
is the default.
`show print symbol-filename'
Show whether or not GDB will print the source file name and line
number of a symbol in the symbolic form of an address.
Another situation where it is helpful to show symbol filenames and
line numbers is when disassembling code; GDB shows you the line number
and source file that corresponds to each instruction.
Also, you may wish to see the symbolic form only if the address being
printed is reasonably close to the closest earlier symbol:
`set print max-symbolic-offset MAX-OFFSET'
Tell GDB to only display the symbolic form of an address if the
offset between the closest earlier symbol and the address is less
than MAX-OFFSET. The default is 0, which tells GDB to always
print the symbolic form of an address if any symbol precedes it.
`show print max-symbolic-offset'
Ask how large the maximum offset is that GDB prints in a symbolic
address.
If you have a pointer and you are not sure where it points, try `set
print symbol-filename on'. Then you can determine the name and source
file location of the variable where it points, using `p/a POINTER'.
This interprets the address in symbolic form. For example, here GDB
shows that a variable `ptt' points at another variable `t', defined in
`hi2.c':
(gdb) set print symbol-filename on
(gdb) p/a ptt
$4 = 0xe008
_Warning:_ For pointers that point to a local variable, `p/a' does
not show the symbol name and filename of the referent, even with
the appropriate `set print' options turned on.
Other settings control how different kinds of objects are printed:
`set print array'
`set print array on'
Pretty print arrays. This format is more convenient to read, but
uses more space. The default is off.
`set print array off'
Return to compressed format for arrays.
`show print array'
Show whether compressed or pretty format is selected for displaying
arrays.
`set print elements NUMBER-OF-ELEMENTS'
Set a limit on how many elements of an array GDB will print. If
GDB is printing a large array, it stops printing after it has
printed the number of elements set by the `set print elements'
command. This limit also applies to the display of strings. When
GDB starts, this limit is set to 200. Setting NUMBER-OF-ELEMENTS
to zero means that the printing is unlimited.
`show print elements'
Display the number of elements of a large array that GDB will
print. If the number is 0, then the printing is unlimited.
`set print null-stop'
Cause GDB to stop printing the characters of an array when the
first NULL is encountered. This is useful when large arrays
actually contain only short strings. The default is off.
`set print pretty on'
Cause GDB to print structures in an indented format with one member
per line, like this:
$1 = {
next = 0x0,
flags = {
sweet = 1,
sour = 1
},
meat = 0x54 "Pork"
}
`set print pretty off'
Cause GDB to print structures in a compact format, like this:
$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
meat = 0x54 "Pork"}
This is the default format.
`show print pretty'
Show which format GDB is using to print structures.
`set print sevenbit-strings on'
Print using only seven-bit characters; if this option is set, GDB
displays any eight-bit characters (in strings or character values)
using the notation `\'NNN. This setting is best if you are
working in English (ASCII) and you use the high-order bit of
characters as a marker or "meta" bit.
`set print sevenbit-strings off'
Print full eight-bit characters. This allows the use of more
international character sets, and is the default.
`show print sevenbit-strings'
Show whether or not GDB is printing only seven-bit characters.
`set print union on'
Tell GDB to print unions which are contained in structures. This
is the default setting.
`set print union off'
Tell GDB not to print unions which are contained in structures.
`show print union'
Ask GDB whether or not it will print unions which are contained in
structures.
For example, given the declarations
typedef enum {Tree, Bug} Species;
typedef enum {Big_tree, Acorn, Seedling} Tree_forms;
typedef enum {Caterpillar, Cocoon, Butterfly}
Bug_forms;
struct thing {
Species it;
union {
Tree_forms tree;
Bug_forms bug;
} form;
};
struct thing foo = {Tree, {Acorn}};
with `set print union on' in effect `p foo' would print
$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}
and with `set print union off' in effect it would print
$1 = {it = Tree, form = {...}}
These settings are of interest when debugging C++ programs:
`set print demangle'
`set print demangle on'
Print C++ names in their source form rather than in the encoded
("mangled") form passed to the assembler and linker for type-safe
linkage. The default is on.
`show print demangle'
Show whether C++ names are printed in mangled or demangled form.
`set print asm-demangle'
`set print asm-demangle on'
Print C++ names in their source form rather than their mangled
form, even in assembler code printouts such as instruction
disassemblies. The default is off.
`show print asm-demangle'
Show whether C++ names in assembly listings are printed in mangled
or demangled form.
`set demangle-style STYLE'
Choose among several encoding schemes used by different compilers
to represent C++ names. The choices for STYLE are currently:
`auto'
Allow GDB to choose a decoding style by inspecting your
program.
`gnu'
Decode based on the GNU C++ compiler (`g++') encoding
algorithm. This is the default.
`hp'
Decode based on the HP ANSI C++ (`aCC') encoding algorithm.
`lucid'
Decode based on the Lucid C++ compiler (`lcc') encoding
algorithm.
`arm'
Decode using the algorithm in the `C++ Annotated Reference
Manual'. *Warning:* this setting alone is not sufficient to
allow debugging `cfront'-generated executables. GDB would
require further enhancement to permit that.
If you omit STYLE, you will see a list of possible formats.
`show demangle-style'
Display the encoding style currently in use for decoding C++
symbols.
`set print object'
`set print object on'
When displaying a pointer to an object, identify the _actual_
(derived) type of the object rather than the _declared_ type, using
the virtual function table.
`set print object off'
Display only the declared type of objects, without reference to the
virtual function table. This is the default setting.
`show print object'
Show whether actual, or declared, object types are displayed.
`set print static-members'
`set print static-members on'
Print static members when displaying a C++ object. The default is
on.
`set print static-members off'
Do not print static members when displaying a C++ object.
`show print static-members'
Show whether C++ static members are printed, or not.
`set print vtbl'
`set print vtbl on'
Pretty print C++ virtual function tables. The default is off.
(The `vtbl' commands do not work on programs compiled with the HP
ANSI C++ compiler (`aCC').)
`set print vtbl off'
Do not pretty print C++ virtual function tables.
`show print vtbl'
Show whether C++ virtual function tables are pretty printed, or
not.
File: gdb.info, Node: Value History, Next: Convenience Vars, Prev: Print Settings, Up: Data
8.8 Value history
=================
Values printed by the `print' command are saved in the GDB "value
history". This allows you to refer to them in other expressions.
Values are kept until the symbol table is re-read or discarded (for
example with the `file' or `symbol-file' commands). When the symbol
table changes, the value history is discarded, since the values may
contain pointers back to the types defined in the symbol table.
The values printed are given "history numbers" by which you can
refer to them. These are successive integers starting with one.
`print' shows you the history number assigned to a value by printing
`$NUM = ' before the value; here NUM is the history number.
To refer to any previous value, use `$' followed by the value's
history number. The way `print' labels its output is designed to
remind you of this. Just `$' refers to the most recent value in the
history, and `$$' refers to the value before that. `$$N' refers to the
Nth value from the end; `$$2' is the value just prior to `$$', `$$1' is
equivalent to `$$', and `$$0' is equivalent to `$'.
For example, suppose you have just printed a pointer to a structure
and want to see the contents of the structure. It suffices to type
p *$
If you have a chain of structures where the component `next' points
to the next one, you can print the contents of the next one with this:
p *$.next
You can print successive links in the chain by repeating this
command--which you can do by just typing .
Note that the history records values, not expressions. If the value
of `x' is 4 and you type these commands:
print x
set x=5
then the value recorded in the value history by the `print' command
remains 4 even though the value of `x' has changed.
`show values'
Print the last ten values in the value history, with their item
numbers. This is like `p $$9' repeated ten times, except that
`show values' does not change the history.
`show values N'
Print ten history values centered on history item number N.
`show values +'
Print ten history values just after the values last printed. If
no more values are available, `show values +' produces no display.
Pressing to repeat `show values N' has exactly the same effect
as `show values +'.
File: gdb.info, Node: Convenience Vars, Next: Registers, Prev: Value History, Up: Data
8.9 Convenience variables
=========================
GDB provides "convenience variables" that you can use within GDB to
hold on to a value and refer to it later. These variables exist
entirely within GDB; they are not part of your program, and setting a
convenience variable has no direct effect on further execution of your
program. That is why you can use them freely.
Convenience variables are prefixed with `$'. Any name preceded by
`$' can be used for a convenience variable, unless it is one of the
predefined machine-specific register names (*note Registers:
Registers.). (Value history references, in contrast, are _numbers_
preceded by `$'. *Note Value history: Value History.)
You can save a value in a convenience variable with an assignment
expression, just as you would set a variable in your program. For
example:
set $foo = *object_ptr
would save in `$foo' the value contained in the object pointed to by
`object_ptr'.
Using a convenience variable for the first time creates it, but its
value is `void' until you assign a new value. You can alter the value
with another assignment at any time.
Convenience variables have no fixed types. You can assign a
convenience variable any type of value, including structures and
arrays, even if that variable already has a value of a different type.
The convenience variable, when used as an expression, has the type of
its current value.
`show convenience'
Print a list of convenience variables used so far, and their
values. Abbreviated `show conv'.
One of the ways to use a convenience variable is as a counter to be
incremented or a pointer to be advanced. For example, to print a field
from successive elements of an array of structures:
set $i = 0
print bar[$i++]->contents
Repeat that command by typing .
Some convenience variables are created automatically by GDB and given
values likely to be useful.
`$_'
The variable `$_' is automatically set by the `x' command to the
last address examined (*note Examining memory: Memory.). Other
commands which provide a default address for `x' to examine also
set `$_' to that address; these commands include `info line' and
`info breakpoint'. The type of `$_' is `void *' except when set
by the `x' command, in which case it is a pointer to the type of
`$__'.
`$__'
The variable `$__' is automatically set by the `x' command to the
value found in the last address examined. Its type is chosen to
match the format in which the data was printed.
`$_exitcode'
The variable `$_exitcode' is automatically set to the exit code
when the program being debugged terminates.
On HP-UX systems, if you refer to a function or variable name that
begins with a dollar sign, GDB searches for a user or system name
first, before it searches for a convenience variable.
File: gdb.info, Node: Registers, Next: Floating Point Hardware, Prev: Convenience Vars, Up: Data
8.10 Registers
==============
You can refer to machine register contents, in expressions, as variables
with names starting with `$'. The names of registers are different for
each machine; use `info registers' to see the names used on your
machine.
`info registers'
Print the names and values of all registers except floating-point
and vector registers (in the selected stack frame).
`info all-registers'
Print the names and values of all registers, including
floating-point and vector registers (in the selected stack frame).
`info registers REGNAME ...'
Print the "relativized" value of each specified register REGNAME.
As discussed in detail below, register values are normally
relative to the selected stack frame. REGNAME may be any register
name valid on the machine you are using, with or without the
initial `$'.
GDB has four "standard" register names that are available (in
expressions) on most machines--whenever they do not conflict with an
architecture's canonical mnemonics for registers. The register names
`$pc' and `$sp' are used for the program counter register and the stack
pointer. `$fp' is used for a register that contains a pointer to the
current stack frame, and `$ps' is used for a register that contains the
processor status. For example, you could print the program counter in
hex with
p/x $pc
or print the instruction to be executed next with
x/i $pc
or add four to the stack pointer(1) with
set $sp += 4
Whenever possible, these four standard register names are available
on your machine even though the machine has different canonical
mnemonics, so long as there is no conflict. The `info registers'
command shows the canonical names. For example, on the SPARC, `info
registers' displays the processor status register as `$psr' but you can
also refer to it as `$ps'; and on x86-based machines `$ps' is an alias
for the EFLAGS register.
GDB always considers the contents of an ordinary register as an
integer when the register is examined in this way. Some machines have
special registers which can hold nothing but floating point; these
registers are considered to have floating point values. There is no way
to refer to the contents of an ordinary register as floating point value
(although you can _print_ it as a floating point value with `print/f
$REGNAME').
Some registers have distinct "raw" and "virtual" data formats. This
means that the data format in which the register contents are saved by
the operating system is not the same one that your program normally
sees. For example, the registers of the 68881 floating point
coprocessor are always saved in "extended" (raw) format, but all C
programs expect to work with "double" (virtual) format. In such cases,
GDB normally works with the virtual format only (the format that makes
sense for your program), but the `info registers' command prints the
data in both formats.
Normally, register values are relative to the selected stack frame
(*note Selecting a frame: Selection.). This means that you get the
value that the register would contain if all stack frames farther in
were exited and their saved registers restored. In order to see the
true contents of hardware registers, you must select the innermost
frame (with `frame 0').
However, GDB must deduce where registers are saved, from the machine
code generated by your compiler. If some registers are not saved, or if
GDB is unable to locate the saved registers, the selected stack frame
makes no difference.
---------- Footnotes ----------
(1) This is a way of removing one word from the stack, on machines
where stacks grow downward in memory (most machines, nowadays). This
assumes that the innermost stack frame is selected; setting `$sp' is
not allowed when other stack frames are selected. To pop entire frames
off the stack, regardless of machine architecture, use `return'; see
*Note Returning from a function: Returning.
File: gdb.info, Node: Floating Point Hardware, Next: Vector Unit, Prev: Registers, Up: Data
8.11 Floating point hardware
============================
Depending on the configuration, GDB may be able to give you more
information about the status of the floating point hardware.
`info float'
Display hardware-dependent information about the floating point
unit. The exact contents and layout vary depending on the
floating point chip. Currently, `info float' is supported on the
ARM and x86 machines.
File: gdb.info, Node: Vector Unit, Next: Auxiliary Vector, Prev: Floating Point Hardware, Up: Data
8.12 Vector Unit
================
Depending on the configuration, GDB may be able to give you more
information about the status of the vector unit.
`info vector'
Display information about the vector unit. The exact contents and
layout vary depending on the hardware.
File: gdb.info, Node: Auxiliary Vector, Next: Memory Region Attributes, Prev: Vector Unit, Up: Data
8.13 Operating system auxiliary vector
======================================
Some operating systems supply an "auxiliary vector" to programs at
startup. This is akin to the arguments and environment that you
specify for a program, but contains a system-dependent variety of
binary values that tell system libraries important details about the
hardware, operating system, and process. Each value's purpose is
identified by an integer tag; the meanings are well-known but
system-specific. Depending on the configuration and operating system
facilities, GDB may be able to show you this information.
`info auxv'
Display the auxiliary vector of the inferior, which can be either a
live process or a core dump file. GDB prints each tag value
numerically, and also shows names and text descriptions for
recognized tags. Some values in the vector are numbers, some bit
masks, and some pointers to strings or other data. GDB displays
each value in the most appropriate form for a recognized tag, and
in hexadecimal for an unrecognized tag.
File: gdb.info, Node: Memory Region Attributes, Next: Dump/Restore Files, Prev: Auxiliary Vector, Up: Data
8.14 Memory region attributes
=============================
"Memory region attributes" allow you to describe special handling
required by regions of your target's memory. GDB uses attributes to
determine whether to allow certain types of memory accesses; whether to
use specific width accesses; and whether to cache target memory.
Defined memory regions can be individually enabled and disabled.
When a memory region is disabled, GDB uses the default attributes when
accessing memory in that region. Similarly, if no memory regions have
been defined, GDB uses the default attributes when accessing all memory.
When a memory region is defined, it is given a number to identify it;
to enable, disable, or remove a memory region, you specify that number.
`mem LOWER UPPER ATTRIBUTES...'
Define memory region bounded by LOWER and UPPER with attributes
ATTRIBUTES.... Note that UPPER == 0 is a special case: it is
treated as the the target's maximum memory address. (0xffff on 16
bit targets, 0xffffffff on 32 bit targets, etc.)
`delete mem NUMS...'
Remove memory regions NUMS....
`disable mem NUMS...'
Disable memory regions NUMS.... A disabled memory region is not
forgotten. It may be enabled again later.
`enable mem NUMS...'
Enable memory regions NUMS....
`info mem'
Print a table of all defined memory regions, with the following
columns for each region.
_Memory Region Number_
_Enabled or Disabled._
Enabled memory regions are marked with `y'. Disabled memory
regions are marked with `n'.
_Lo Address_
The address defining the inclusive lower bound of the memory
region.
_Hi Address_
The address defining the exclusive upper bound of the memory
region.
_Attributes_
The list of attributes set for this memory region.
8.14.1 Attributes
-----------------
8.14.1.1 Memory Access Mode
...........................
The access mode attributes set whether GDB may make read or write
accesses to a memory region.
While these attributes prevent GDB from performing invalid memory
accesses, they do nothing to prevent the target system, I/O DMA, etc.
from accessing memory.
`ro'
Memory is read only.
`wo'
Memory is write only.
`rw'
Memory is read/write. This is the default.
8.14.1.2 Memory Access Size
...........................
The acccess size attributes tells GDB to use specific sized accesses in
the memory region. Often memory mapped device registers require
specific sized accesses. If no access size attribute is specified, GDB
may use accesses of any size.
`8'
Use 8 bit memory accesses.
`16'
Use 16 bit memory accesses.
`32'
Use 32 bit memory accesses.
`64'
Use 64 bit memory accesses.
8.14.1.3 Data Cache
...................
The data cache attributes set whether GDB will cache target memory.
While this generally improves performance by reducing debug protocol
overhead, it can lead to incorrect results because GDB does not know
about volatile variables or memory mapped device registers.
`cache'
Enable GDB to cache target memory.
`nocache'
Disable GDB from caching target memory. This is the default.
File: gdb.info, Node: Dump/Restore Files, Next: Character Sets, Prev: Memory Region Attributes, Up: Data
8.15 Copy between memory and a file
===================================
You can use the commands `dump', `append', and `restore' to copy data
between target memory and a file. The `dump' and `append' commands
write data to a file, and the `restore' command reads data from a file
back into the inferior's memory. Files may be in binary, Motorola
S-record, Intel hex, or Tektronix Hex format; however, GDB can only
append to binary files.
`dump [FORMAT] memory FILENAME START_ADDR END_ADDR'
`dump [FORMAT] value FILENAME EXPR'
Dump the contents of memory from START_ADDR to END_ADDR, or the
value of EXPR, to FILENAME in the given format.
The FORMAT parameter may be any one of:
`binary'
Raw binary form.
`ihex'
Intel hex format.
`srec'
Motorola S-record format.
`tekhex'
Tektronix Hex format.
GDB uses the same definitions of these formats as the GNU binary
utilities, like `objdump' and `objcopy'. If FORMAT is omitted,
GDB dumps the data in raw binary form.
`append [binary] memory FILENAME START_ADDR END_ADDR'
`append [binary] value FILENAME EXPR'
Append the contents of memory from START_ADDR to END_ADDR, or the
value of EXPR, to FILENAME, in raw binary form. (GDB can only
append data to files in raw binary form.)
`restore FILENAME [binary] BIAS START END'
Restore the contents of file FILENAME into memory. The `restore'
command can automatically recognize any known BFD file format,
except for raw binary. To restore a raw binary file you must
specify the optional keyword `binary' after the filename.
If BIAS is non-zero, its value will be added to the addresses
contained in the file. Binary files always start at address zero,
so they will be restored at address BIAS. Other bfd files have a
built-in location; they will be restored at offset BIAS from that
location.
If START and/or END are non-zero, then only data between file
offset START and file offset END will be restored. These offsets
are relative to the addresses in the file, before the BIAS
argument is applied.
File: gdb.info, Node: Character Sets, Prev: Dump/Restore Files, Up: Data
8.16 Character Sets
===================
If the program you are debugging uses a different character set to
represent characters and strings than the one GDB uses itself, GDB can
automatically translate between the character sets for you. The
character set GDB uses we call the "host character set"; the one the
inferior program uses we call the "target character set".
For example, if you are running GDB on a GNU/Linux system, which
uses the ISO Latin 1 character set, but you are using GDB's remote
protocol (*note Remote Debugging: Remote.) to debug a program running
on an IBM mainframe, which uses the EBCDIC character set, then the host
character set is Latin-1, and the target character set is EBCDIC. If
you give GDB the command `set target-charset EBCDIC-US', then GDB
translates between EBCDIC and Latin 1 as you print character or string
values, or use character and string literals in expressions.
GDB has no way to automatically recognize which character set the
inferior program uses; you must tell it, using the `set target-charset'
command, described below.
Here are the commands for controlling GDB's character set support:
`set target-charset CHARSET'
Set the current target character set to CHARSET. We list the
character set names GDB recognizes below, but if you type `set
target-charset' followed by , GDB will list the target
character sets it supports.
`set host-charset CHARSET'
Set the current host character set to CHARSET.
By default, GDB uses a host character set appropriate to the
system it is running on; you can override that default using the
`set host-charset' command.
GDB can only use certain character sets as its host character set.
We list the character set names GDB recognizes below, and
indicate which can be host character sets, but if you type `set
target-charset' followed by , GDB will list the host
character sets it supports.
`set charset CHARSET'
Set the current host and target character sets to CHARSET. As
above, if you type `set charset' followed by , GDB will
list the name of the character sets that can be used for both host
and target.
`show charset'
Show the names of the current host and target charsets.
`show host-charset'
Show the name of the current host charset.
`show target-charset'
Show the name of the current target charset.
GDB currently includes support for the following character sets:
`ASCII'
Seven-bit U.S. ASCII. GDB can use this as its host character set.
`ISO-8859-1'
The ISO Latin 1 character set. This extends ASCII with accented
characters needed for French, German, and Spanish. GDB can use
this as its host character set.
`EBCDIC-US'
`IBM1047'
Variants of the EBCDIC character set, used on some of IBM's
mainframe operating systems. (GNU/Linux on the S/390 uses U.S.
ASCII.) GDB cannot use these as its host character set.
Note that these are all single-byte character sets. More work inside
GDB is needed to support multi-byte or variable-width character
encodings, like the UTF-8 and UCS-2 encodings of Unicode.
Here is an example of GDB's character set support in action. Assume
that the following source code has been placed in the file
`charset-test.c':
#include
char ascii_hello[]
= {72, 101, 108, 108, 111, 44, 32, 119,
111, 114, 108, 100, 33, 10, 0};
char ibm1047_hello[]
= {200, 133, 147, 147, 150, 107, 64, 166,
150, 153, 147, 132, 90, 37, 0};
main ()
{
printf ("Hello, world!\n");
}
In this program, `ascii_hello' and `ibm1047_hello' are arrays
containing the string `Hello, world!' followed by a newline, encoded in
the ASCII and IBM1047 character sets.
We compile the program, and invoke the debugger on it:
$ gcc -g charset-test.c -o charset-test
$ gdb -nw charset-test
GNU gdb 2001-12-19-cvs
Copyright 2001 Free Software Foundation, Inc.
...
(gdb)
We can use the `show charset' command to see what character sets GDB
is currently using to interpret and display characters and strings:
(gdb) show charset
The current host and target character set is `ISO-8859-1'.
(gdb)
For the sake of printing this manual, let's use ASCII as our initial
character set:
(gdb) set charset ASCII
(gdb) show charset
The current host and target character set is `ASCII'.
(gdb)
Let's assume that ASCII is indeed the correct character set for our
host system -- in other words, let's assume that if GDB prints
characters using the ASCII character set, our terminal will display
them properly. Since our current target character set is also ASCII,
the contents of `ascii_hello' print legibly:
(gdb) print ascii_hello
$1 = 0x401698 "Hello, world!\n"
(gdb) print ascii_hello[0]
$2 = 72 'H'
(gdb)
GDB uses the target character set for character and string literals
you use in expressions:
(gdb) print '+'
$3 = 43 '+'
(gdb)
The ASCII character set uses the number 43 to encode the `+'
character.
GDB relies on the user to tell it which character set the target
program uses. If we print `ibm1047_hello' while our target character
set is still ASCII, we get jibberish:
(gdb) print ibm1047_hello
$4 = 0x4016a8 "\310\205\223\223\226k@\246\226\231\223\204Z%"
(gdb) print ibm1047_hello[0]
$5 = 200 '\310'
(gdb)
If we invoke the `set target-charset' followed by , GDB
tells us the character sets it supports:
(gdb) set target-charset
ASCII EBCDIC-US IBM1047 ISO-8859-1
(gdb) set target-charset
We can select IBM1047 as our target character set, and examine the
program's strings again. Now the ASCII string is wrong, but GDB
translates the contents of `ibm1047_hello' from the target character
set, IBM1047, to the host character set, ASCII, and they display
correctly:
(gdb) set target-charset IBM1047
(gdb) show charset
The current host character set is `ASCII'.
The current target character set is `IBM1047'.
(gdb) print ascii_hello
$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
(gdb) print ascii_hello[0]
$7 = 72 '\110'
(gdb) print ibm1047_hello
$8 = 0x4016a8 "Hello, world!\n"
(gdb) print ibm1047_hello[0]
$9 = 200 'H'
(gdb)
As above, GDB uses the target character set for character and string
literals you use in expressions:
(gdb) print '+'
$10 = 78 '+'
(gdb)
The IBM1047 character set uses the number 78 to encode the `+'
character.
File: gdb.info, Node: Macros, Next: Tracepoints, Prev: Data, Up: Top
9 C Preprocessor Macros
***********************
Some languages, such as C and C++, provide a way to define and invoke
"preprocessor macros" which expand into strings of tokens. GDB can
evaluate expressions containing macro invocations, show the result of
macro expansion, and show a macro's definition, including where it was
defined.
You may need to compile your program specially to provide GDB with
information about preprocessor macros. Most compilers do not include
macros in their debugging information, even when you compile with the
`-g' flag. *Note Compilation::.
A program may define a macro at one point, remove that definition
later, and then provide a different definition after that. Thus, at
different points in the program, a macro may have different
definitions, or have no definition at all. If there is a current stack
frame, GDB uses the macros in scope at that frame's source code line.
Otherwise, GDB uses the macros in scope at the current listing location;
see *Note List::.
At the moment, GDB does not support the `##' token-splicing
operator, the `#' stringification operator, or variable-arity macros.
Whenever GDB evaluates an expression, it always expands any macro
invocations present in the expression. GDB also provides the following
commands for working with macros explicitly.
`macro expand EXPRESSION'
`macro exp EXPRESSION'
Show the results of expanding all preprocessor macro invocations in
EXPRESSION. Since GDB simply expands macros, but does not parse
the result, EXPRESSION need not be a valid expression; it can be
any string of tokens.
`macro expand-once EXPRESSION'
`macro exp1 EXPRESSION'
(This command is not yet implemented.) Show the results of
expanding those preprocessor macro invocations that appear
explicitly in EXPRESSION. Macro invocations appearing in that
expansion are left unchanged. This command allows you to see the
effect of a particular macro more clearly, without being confused
by further expansions. Since GDB simply expands macros, but does
not parse the result, EXPRESSION need not be a valid expression; it
can be any string of tokens.
`info macro MACRO'
Show the definition of the macro named MACRO, and describe the
source location where that definition was established.
`macro define MACRO REPLACEMENT-LIST'
`macro define MACRO(ARGLIST) REPLACEMENT-LIST'
(This command is not yet implemented.) Introduce a definition for
a preprocessor macro named MACRO, invocations of which are replaced
by the tokens given in REPLACEMENT-LIST. The first form of this
command defines an "object-like" macro, which takes no arguments;
the second form defines a "function-like" macro, which takes the
arguments given in ARGLIST.
A definition introduced by this command is in scope in every
expression evaluated in GDB, until it is removed with the `macro
undef' command, described below. The definition overrides all
definitions for MACRO present in the program being debugged, as
well as any previous user-supplied definition.
`macro undef MACRO'
(This command is not yet implemented.) Remove any user-supplied
definition for the macro named MACRO. This command only affects
definitions provided with the `macro define' command, described
above; it cannot remove definitions present in the program being
debugged.
Here is a transcript showing the above commands in action. First, we
show our source files:
$ cat sample.c
#include
#include "sample.h"
#define M 42
#define ADD(x) (M + x)
main ()
{
#define N 28
printf ("Hello, world!\n");
#undef N
printf ("We're so creative.\n");
#define N 1729
printf ("Goodbye, world!\n");
}
$ cat sample.h
#define Q <
$
Now, we compile the program using the GNU C compiler, GCC. We pass
the `-gdwarf-2' and `-g3' flags to ensure the compiler includes
information about preprocessor macros in the debugging information.
$ gcc -gdwarf-2 -g3 sample.c -o sample
$
Now, we start GDB on our sample program:
$ gdb -nw sample
GNU gdb 2002-05-06-cvs
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, ...
(gdb)
We can expand macros and examine their definitions, even when the
program is not running. GDB uses the current listing position to
decide which macro definitions are in scope:
(gdb) list main
3
4 #define M 42
5 #define ADD(x) (M + x)
6
7 main ()
8 {
9 #define N 28
10 printf ("Hello, world!\n");
11 #undef N
12 printf ("We're so creative.\n");
(gdb) info macro ADD
Defined at /home/jimb/gdb/macros/play/sample.c:5
#define ADD(x) (M + x)
(gdb) info macro Q
Defined at /home/jimb/gdb/macros/play/sample.h:1
included at /home/jimb/gdb/macros/play/sample.c:2
#define Q <
(gdb) macro expand ADD(1)
expands to: (42 + 1)
(gdb) macro expand-once ADD(1)
expands to: once (M + 1)
(gdb)
In the example above, note that `macro expand-once' expands only the
macro invocation explicit in the original text -- the invocation of
`ADD' -- but does not expand the invocation of the macro `M', which was
introduced by `ADD'.
Once the program is running, GDB uses the macro definitions in force
at the source line of the current stack frame:
(gdb) break main
Breakpoint 1 at 0x8048370: file sample.c, line 10.
(gdb) run
Starting program: /home/jimb/gdb/macros/play/sample
Breakpoint 1, main () at sample.c:10
10 printf ("Hello, world!\n");
(gdb)
At line 10, the definition of the macro `N' at line 9 is in force:
(gdb) info macro N
Defined at /home/jimb/gdb/macros/play/sample.c:9
#define N 28
(gdb) macro expand N Q M
expands to: 28 < 42
(gdb) print N Q M
$1 = 1
(gdb)
As we step over directives that remove `N''s definition, and then
give it a new definition, GDB finds the definition (or lack thereof) in
force at each point:
(gdb) next
Hello, world!
12 printf ("We're so creative.\n");
(gdb) info macro N
The symbol `N' has no definition as a C/C++ preprocessor macro
at /home/jimb/gdb/macros/play/sample.c:12
(gdb) next
We're so creative.
14 printf ("Goodbye, world!\n");
(gdb) info macro N
Defined at /home/jimb/gdb/macros/play/sample.c:13
#define N 1729
(gdb) macro expand N Q M
expands to: 1729 < 42
(gdb) print N Q M
$2 = 0
(gdb)
File: gdb.info, Node: Tracepoints, Next: Overlays, Prev: Macros, Up: Top
10 Tracepoints
**************
In some applications, it is not feasible for the debugger to interrupt
the program's execution long enough for the developer to learn anything
helpful about its behavior. If the program's correctness depends on
its real-time behavior, delays introduced by a debugger might cause the
program to change its behavior drastically, or perhaps fail, even when
the code itself is correct. It is useful to be able to observe the
program's behavior without interrupting it.
Using GDB's `trace' and `collect' commands, you can specify
locations in the program, called "tracepoints", and arbitrary
expressions to evaluate when those tracepoints are reached. Later,
using the `tfind' command, you can examine the values those expressions
had when the program hit the tracepoints. The expressions may also
denote objects in memory--structures or arrays, for example--whose
values GDB should record; while visiting a particular tracepoint, you
may inspect those objects as if they were in memory at that moment.
However, because GDB records these values without interacting with you,
it can do so quickly and unobtrusively, hopefully not disturbing the
program's behavior.
The tracepoint facility is currently available only for remote
targets. *Note Targets::. In addition, your remote target must know
how to collect trace data. This functionality is implemented in the
remote stub; however, none of the stubs distributed with GDB support
tracepoints as of this writing.
This chapter describes the tracepoint commands and features.
* Menu:
* Set Tracepoints::
* Analyze Collected Data::
* Tracepoint Variables::
File: gdb.info, Node: Set Tracepoints, Next: Analyze Collected Data, Up: Tracepoints
10.1 Commands to Set Tracepoints
================================
Before running such a "trace experiment", an arbitrary number of
tracepoints can be set. Like a breakpoint (*note Set Breaks::), a
tracepoint has a number assigned to it by GDB. Like with breakpoints,
tracepoint numbers are successive integers starting from one. Many of
the commands associated with tracepoints take the tracepoint number as
their argument, to identify which tracepoint to work on.
For each tracepoint, you can specify, in advance, some arbitrary set
of data that you want the target to collect in the trace buffer when it
hits that tracepoint. The collected data can include registers, local
variables, or global data. Later, you can use GDB commands to examine
the values these data had at the time the tracepoint was hit.
This section describes commands to set tracepoints and associated
conditions and actions.
* Menu:
* Create and Delete Tracepoints::
* Enable and Disable Tracepoints::
* Tracepoint Passcounts::
* Tracepoint Actions::
* Listing Tracepoints::
* Starting and Stopping Trace Experiment::
File: gdb.info, Node: Create and Delete Tracepoints, Next: Enable and Disable Tracepoints, Up: Set Tracepoints
10.1.1 Create and Delete Tracepoints
------------------------------------
`trace'
The `trace' command is very similar to the `break' command. Its
argument can be a source line, a function name, or an address in
the target program. *Note Set Breaks::. The `trace' command
defines a tracepoint, which is a point in the target program where
the debugger will briefly stop, collect some data, and then allow
the program to continue. Setting a tracepoint or changing its
commands doesn't take effect until the next `tstart' command;
thus, you cannot change the tracepoint attributes once a trace
experiment is running.
Here are some examples of using the `trace' command:
(gdb) trace foo.c:121 // a source file and line number
(gdb) trace +2 // 2 lines forward
(gdb) trace my_function // first source line of function
(gdb) trace *my_function // EXACT start address of function
(gdb) trace *0x2117c4 // an address
You can abbreviate `trace' as `tr'.
The convenience variable `$tpnum' records the tracepoint number of
the most recently set tracepoint.
`delete tracepoint [NUM]'
Permanently delete one or more tracepoints. With no argument, the
default is to delete all tracepoints.
Examples:
(gdb) delete trace 1 2 3 // remove three tracepoints
(gdb) delete trace // remove all tracepoints
You can abbreviate this command as `del tr'.
File: gdb.info, Node: Enable and Disable Tracepoints, Next: Tracepoint Passcounts, Prev: Create and Delete Tracepoints, Up: Set Tracepoints
10.1.2 Enable and Disable Tracepoints
-------------------------------------
`disable tracepoint [NUM]'
Disable tracepoint NUM, or all tracepoints if no argument NUM is
given. A disabled tracepoint will have no effect during the next
trace experiment, but it is not forgotten. You can re-enable a
disabled tracepoint using the `enable tracepoint' command.
`enable tracepoint [NUM]'
Enable tracepoint NUM, or all tracepoints. The enabled
tracepoints will become effective the next time a trace experiment
is run.
File: gdb.info, Node: Tracepoint Passcounts, Next: Tracepoint Actions, Prev: Enable and Disable Tracepoints, Up: Set Tracepoints
10.1.3 Tracepoint Passcounts
----------------------------
`passcount [N [NUM]]'
Set the "passcount" of a tracepoint. The passcount is a way to
automatically stop a trace experiment. If a tracepoint's
passcount is N, then the trace experiment will be automatically
stopped on the N'th time that tracepoint is hit. If the
tracepoint number NUM is not specified, the `passcount' command
sets the passcount of the most recently defined tracepoint. If no
passcount is given, the trace experiment will run until stopped
explicitly by the user.
Examples:
(gdb) passcount 5 2 // Stop on the 5th execution of
`// tracepoint 2'
(gdb) passcount 12 // Stop on the 12th execution of the
`// most recently defined tracepoint.'
(gdb) trace foo
(gdb) pass 3
(gdb) trace bar
(gdb) pass 2
(gdb) trace baz
(gdb) pass 1 // Stop tracing when foo has been
`// executed 3 times OR when bar has'
`// been executed 2 times'
`// OR when baz has been executed 1 time.'
File: gdb.info, Node: Tracepoint Actions, Next: Listing Tracepoints, Prev: Tracepoint Passcounts, Up: Set Tracepoints
10.1.4 Tracepoint Action Lists
------------------------------
`actions [NUM]'
This command will prompt for a list of actions to be taken when the
tracepoint is hit. If the tracepoint number NUM is not specified,
this command sets the actions for the one that was most recently
defined (so that you can define a tracepoint and then say
`actions' without bothering about its number). You specify the
actions themselves on the following lines, one action at a time,
and terminate the actions list with a line containing just `end'.
So far, the only defined actions are `collect' and
`while-stepping'.
To remove all actions from a tracepoint, type `actions NUM' and
follow it immediately with `end'.
(gdb) collect DATA // collect some data
(gdb) while-stepping 5 // single-step 5 times, collect data
(gdb) end // signals the end of actions.
In the following example, the action list begins with `collect'
commands indicating the things to be collected when the tracepoint
is hit. Then, in order to single-step and collect additional data
following the tracepoint, a `while-stepping' command is used,
followed by the list of things to be collected while stepping. The
`while-stepping' command is terminated by its own separate `end'
command. Lastly, the action list is terminated by an `end'
command.
(gdb) trace foo
(gdb) actions
Enter actions for tracepoint 1, one per line:
> collect bar,baz
> collect $regs
> while-stepping 12
> collect $fp, $sp
> end
end
`collect EXPR1, EXPR2, ...'
Collect values of the given expressions when the tracepoint is hit.
This command accepts a comma-separated list of any valid
expressions. In addition to global, static, or local variables,
the following special arguments are supported:
`$regs'
collect all registers
`$args'
collect all function arguments
`$locals'
collect all local variables.
You can give several consecutive `collect' commands, each one with
a single argument, or one `collect' command with several arguments
separated by commas: the effect is the same.
The command `info scope' (*note info scope: Symbols.) is
particularly useful for figuring out what data to collect.
`while-stepping N'
Perform N single-step traces after the tracepoint, collecting new
data at each step. The `while-stepping' command is followed by
the list of what to collect while stepping (followed by its own
`end' command):
> while-stepping 12
> collect $regs, myglobal
> end
>
You may abbreviate `while-stepping' as `ws' or `stepping'.
File: gdb.info, Node: Listing Tracepoints, Next: Starting and Stopping Trace Experiment, Prev: Tracepoint Actions, Up: Set Tracepoints
10.1.5 Listing Tracepoints
--------------------------
`info tracepoints [NUM]'
Display information about the tracepoint NUM. If you don't specify
a tracepoint number, displays information about all the tracepoints
defined so far. For each tracepoint, the following information is
shown:
* its number
* whether it is enabled or disabled
* its address
* its passcount as given by the `passcount N' command
* its step count as given by the `while-stepping N' command
* where in the source files is the tracepoint set
* its action list as given by the `actions' command
(gdb) info trace
Num Enb Address PassC StepC What
1 y 0x002117c4 0 0
2 y 0x0020dc64 0 0 in g_test at g_test.c:1375
3 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
(gdb)
This command can be abbreviated `info tp'.
File: gdb.info, Node: Starting and Stopping Trace Experiment, Prev: Listing Tracepoints, Up: Set Tracepoints
10.1.6 Starting and Stopping Trace Experiment
---------------------------------------------
`tstart'
This command takes no arguments. It starts the trace experiment,
and begins collecting data. This has the side effect of
discarding all the data collected in the trace buffer during the
previous trace experiment.
`tstop'
This command takes no arguments. It ends the trace experiment, and
stops collecting data.
*Note:* a trace experiment and data collection may stop
automatically if any tracepoint's passcount is reached (*note
Tracepoint Passcounts::), or if the trace buffer becomes full.
`tstatus'
This command displays the status of the current trace data
collection.
Here is an example of the commands we described so far:
(gdb) trace gdb_c_test
(gdb) actions
Enter actions for tracepoint #1, one per line.
> collect $regs,$locals,$args
> while-stepping 11
> collect $regs
> end
> end
(gdb) tstart
[time passes ...]
(gdb) tstop
File: gdb.info, Node: Analyze Collected Data, Next: Tracepoint Variables, Prev: Set Tracepoints, Up: Tracepoints
10.2 Using the collected data
=============================
After the tracepoint experiment ends, you use GDB commands for
examining the trace data. The basic idea is that each tracepoint
collects a trace "snapshot" every time it is hit and another snapshot
every time it single-steps. All these snapshots are consecutively
numbered from zero and go into a buffer, and you can examine them
later. The way you examine them is to "focus" on a specific trace
snapshot. When the remote stub is focused on a trace snapshot, it will
respond to all GDB requests for memory and registers by reading from
the buffer which belongs to that snapshot, rather than from _real_
memory or registers of the program being debugged. This means that
*all* GDB commands (`print', `info registers', `backtrace', etc.) will
behave as if we were currently debugging the program state as it was
when the tracepoint occurred. Any requests for data that are not in
the buffer will fail.
* Menu:
* tfind:: How to select a trace snapshot
* tdump:: How to display all data for a snapshot
* save-tracepoints:: How to save tracepoints for a future run
File: gdb.info, Node: tfind, Next: tdump, Up: Analyze Collected Data
10.2.1 `tfind N'
----------------
The basic command for selecting a trace snapshot from the buffer is
`tfind N', which finds trace snapshot number N, counting from zero. If
no argument N is given, the next snapshot is selected.
Here are the various forms of using the `tfind' command.
`tfind start'
Find the first snapshot in the buffer. This is a synonym for
`tfind 0' (since 0 is the number of the first snapshot).
`tfind none'
Stop debugging trace snapshots, resume _live_ debugging.
`tfind end'
Same as `tfind none'.
`tfind'
No argument means find the next trace snapshot.
`tfind -'
Find the previous trace snapshot before the current one. This
permits retracing earlier steps.
`tfind tracepoint NUM'
Find the next snapshot associated with tracepoint NUM. Search
proceeds forward from the last examined trace snapshot. If no
argument NUM is given, it means find the next snapshot collected
for the same tracepoint as the current snapshot.
`tfind pc ADDR'
Find the next snapshot associated with the value ADDR of the
program counter. Search proceeds forward from the last examined
trace snapshot. If no argument ADDR is given, it means find the
next snapshot with the same value of PC as the current snapshot.
`tfind outside ADDR1, ADDR2'
Find the next snapshot whose PC is outside the given range of
addresses.
`tfind range ADDR1, ADDR2'
Find the next snapshot whose PC is between ADDR1 and ADDR2.
`tfind line [FILE:]N'
Find the next snapshot associated with the source line N. If the
optional argument FILE is given, refer to line N in that source
file. Search proceeds forward from the last examined trace
snapshot. If no argument N is given, it means find the next line
other than the one currently being examined; thus saying `tfind
line' repeatedly can appear to have the same effect as stepping
from line to line in a _live_ debugging session.
The default arguments for the `tfind' commands are specifically
designed to make it easy to scan through the trace buffer. For
instance, `tfind' with no argument selects the next trace snapshot, and
`tfind -' with no argument selects the previous trace snapshot. So, by
giving one `tfind' command, and then simply hitting repeatedly
you can examine all the trace snapshots in order. Or, by saying `tfind
-' and then hitting repeatedly you can examine the snapshots in
reverse order. The `tfind line' command with no argument selects the
snapshot for the next source line executed. The `tfind pc' command with
no argument selects the next snapshot with the same program counter
(PC) as the current frame. The `tfind tracepoint' command with no
argument selects the next trace snapshot collected by the same
tracepoint as the current one.
In addition to letting you scan through the trace buffer manually,
these commands make it easy to construct GDB scripts that scan through
the trace buffer and print out whatever collected data you are
interested in. Thus, if we want to examine the PC, FP, and SP
registers from each trace frame in the buffer, we can say this:
(gdb) tfind start
(gdb) while ($trace_frame != -1)
> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
$trace_frame, $pc, $sp, $fp
> tfind
> end
Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
Or, if we want to examine the variable `X' at each source line in
the buffer:
(gdb) tfind start
(gdb) while ($trace_frame != -1)
> printf "Frame %d, X == %d\n", $trace_frame, X
> tfind line
> end
Frame 0, X = 1
Frame 7, X = 2
Frame 13, X = 255
File: gdb.info, Node: tdump, Next: save-tracepoints, Prev: tfind, Up: Analyze Collected Data
10.2.2 `tdump'
--------------
This command takes no arguments. It prints all the data collected at
the current trace snapshot.
(gdb) trace 444
(gdb) actions
Enter actions for tracepoint #2, one per line:
> collect $regs, $locals, $args, gdb_long_test
> end
(gdb) tstart
(gdb) tfind line 444
#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
at gdb_test.c:444
444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
(gdb) tdump
Data collected at tracepoint 2, trace frame 1:
d0 0xc4aa0085 -995491707
d1 0x18 24
d2 0x80 128
d3 0x33 51
d4 0x71aea3d 119204413
d5 0x22 34
d6 0xe0 224
d7 0x380035 3670069
a0 0x19e24a 1696330
a1 0x3000668 50333288
a2 0x100 256
a3 0x322000 3284992
a4 0x3000698 50333336
a5 0x1ad3cc 1758156
fp 0x30bf3c 0x30bf3c
sp 0x30bf34 0x30bf34
ps 0x0 0
pc 0x20b2c8 0x20b2c8
fpcontrol 0x0 0
fpstatus 0x0 0
fpiaddr 0x0 0
p = 0x20e5b4 "gdb-test"
p1 = (void *) 0x11
p2 = (void *) 0x22
p3 = (void *) 0x33
p4 = (void *) 0x44
p5 = (void *) 0x55
p6 = (void *) 0x66
gdb_long_test = 17 '\021'
(gdb)
File: gdb.info, Node: save-tracepoints, Prev: tdump, Up: Analyze Collected Data
10.2.3 `save-tracepoints FILENAME'
----------------------------------
This command saves all current tracepoint definitions together with
their actions and passcounts, into a file `FILENAME' suitable for use
in a later debugging session. To read the saved tracepoint
definitions, use the `source' command (*note Command Files::).
File: gdb.info, Node: Tracepoint Variables, Prev: Analyze Collected Data, Up: Tracepoints
10.3 Convenience Variables for Tracepoints
==========================================
`(int) $trace_frame'
The current trace snapshot (a.k.a. "frame") number, or -1 if no
snapshot is selected.
`(int) $tracepoint'
The tracepoint for the current trace snapshot.
`(int) $trace_line'
The line number for the current trace snapshot.
`(char []) $trace_file'
The source file for the current trace snapshot.
`(char []) $trace_func'
The name of the function containing `$tracepoint'.
Note: `$trace_file' is not suitable for use in `printf', use
`output' instead.
Here's a simple example of using these convenience variables for
stepping through all the trace snapshots and printing some of their
data.
(gdb) tfind start
(gdb) while $trace_frame != -1
> output $trace_file
> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
> tfind
> end
File: gdb.info, Node: Overlays, Next: Languages, Prev: Tracepoints, Up: Top
11 Debugging Programs That Use Overlays
***************************************
If your program is too large to fit completely in your target system's
memory, you can sometimes use "overlays" to work around this problem.
GDB provides some support for debugging programs that use overlays.
* Menu:
* How Overlays Work:: A general explanation of overlays.
* Overlay Commands:: Managing overlays in GDB.
* Automatic Overlay Debugging:: GDB can find out which overlays are
mapped by asking the inferior.
* Overlay Sample Program:: A sample program using overlays.
File: gdb.info, Node: How Overlays Work, Next: Overlay Commands, Up: Overlays
11.1 How Overlays Work
======================
Suppose you have a computer whose instruction address space is only 64
kilobytes long, but which has much more memory which can be accessed by
other means: special instructions, segment registers, or memory
management hardware, for example. Suppose further that you want to
adapt a program which is larger than 64 kilobytes to run on this system.
One solution is to identify modules of your program which are
relatively independent, and need not call each other directly; call
these modules "overlays". Separate the overlays from the main program,
and place their machine code in the larger memory. Place your main
program in instruction memory, but leave at least enough space there to
hold the largest overlay as well.
Now, to call a function located in an overlay, you must first copy
that overlay's machine code from the large memory into the space set
aside for it in the instruction memory, and then jump to its entry point
there.
Data Instruction Larger
Address Space Address Space Address Space
+-----------+ +-----------+ +-----------+
| | | | | |
+-----------+ +-----------+ +-----------+<-- overlay 1
| program | | main | .----| overlay 1 | load address
| variables | | program | | +-----------+
| and heap | | | | | |
+-----------+ | | | +-----------+<-- overlay 2
| | +-----------+ | | | load address
+-----------+ | | | .-| overlay 2 |
| | | | | |
mapped --->+-----------+ | | +-----------+
address | | | | | |
| overlay | <-' | | |
| area | <---' +-----------+<-- overlay 3
| | <---. | | load address
+-----------+ `--| overlay 3 |
| | | |
+-----------+ | |
+-----------+
| |
+-----------+
A code overlay
The diagram (*note A code overlay::) shows a system with separate
data and instruction address spaces. To map an overlay, the program
copies its code from the larger address space to the instruction
address space. Since the overlays shown here all use the same mapped
address, only one may be mapped at a time. For a system with a single
address space for data and instructions, the diagram would be similar,
except that the program variables and heap would share an address space
with the main program and the overlay area.
An overlay loaded into instruction memory and ready for use is
called a "mapped" overlay; its "mapped address" is its address in the
instruction memory. An overlay not present (or only partially present)
in instruction memory is called "unmapped"; its "load address" is its
address in the larger memory. The mapped address is also called the
"virtual memory address", or "VMA"; the load address is also called the
"load memory address", or "LMA".
Unfortunately, overlays are not a completely transparent way to
adapt a program to limited instruction memory. They introduce a new
set of global constraints you must keep in mind as you design your
program:
* Before calling or returning to a function in an overlay, your
program must make sure that overlay is actually mapped.
Otherwise, the call or return will transfer control to the right
address, but in the wrong overlay, and your program will probably
crash.
* If the process of mapping an overlay is expensive on your system,
you will need to choose your overlays carefully to minimize their
effect on your program's performance.
* The executable file you load onto your system must contain each
overlay's instructions, appearing at the overlay's load address,
not its mapped address. However, each overlay's instructions must
be relocated and its symbols defined as if the overlay were at its
mapped address. You can use GNU linker scripts to specify
different load and relocation addresses for pieces of your
program; see *Note Overlay Description: (ld.info)Overlay
Description.
* The procedure for loading executable files onto your system must
be able to load their contents into the larger address space as
well as the instruction and data spaces.
The overlay system described above is rather simple, and could be
improved in many ways:
* If your system has suitable bank switch registers or memory
management hardware, you could use those facilities to make an
overlay's load area contents simply appear at their mapped address
in instruction space. This would probably be faster than copying
the overlay to its mapped area in the usual way.
* If your overlays are small enough, you could set aside more than
one overlay area, and have more than one overlay mapped at a time.
* You can use overlays to manage data, as well as instructions. In
general, data overlays are even less transparent to your design
than code overlays: whereas code overlays only require care when
you call or return to functions, data overlays require care every
time you access the data. Also, if you change the contents of a
data overlay, you must copy its contents back out to its load
address before you can copy a different data overlay into the same
mapped area.
File: gdb.info, Node: Overlay Commands, Next: Automatic Overlay Debugging, Prev: How Overlays Work, Up: Overlays
11.2 Overlay Commands
=====================
To use GDB's overlay support, each overlay in your program must
correspond to a separate section of the executable file. The section's
virtual memory address and load memory address must be the overlay's
mapped and load addresses. Identifying overlays with sections allows
GDB to determine the appropriate address of a function or variable,
depending on whether the overlay is mapped or not.
GDB's overlay commands all start with the word `overlay'; you can
abbreviate this as `ov' or `ovly'. The commands are:
`overlay off'
Disable GDB's overlay support. When overlay support is disabled,
GDB assumes that all functions and variables are always present at
their mapped addresses. By default, GDB's overlay support is
disabled.
`overlay manual'
Enable "manual" overlay debugging. In this mode, GDB relies on
you to tell it which overlays are mapped, and which are not, using
the `overlay map-overlay' and `overlay unmap-overlay' commands
described below.
`overlay map-overlay OVERLAY'
`overlay map OVERLAY'
Tell GDB that OVERLAY is now mapped; OVERLAY must be the name of
the object file section containing the overlay. When an overlay
is mapped, GDB assumes it can find the overlay's functions and
variables at their mapped addresses. GDB assumes that any other
overlays whose mapped ranges overlap that of OVERLAY are now
unmapped.
`overlay unmap-overlay OVERLAY'
`overlay unmap OVERLAY'
Tell GDB that OVERLAY is no longer mapped; OVERLAY must be the
name of the object file section containing the overlay. When an
overlay is unmapped, GDB assumes it can find the overlay's
functions and variables at their load addresses.
`overlay auto'
Enable "automatic" overlay debugging. In this mode, GDB consults
a data structure the overlay manager maintains in the inferior to
see which overlays are mapped. For details, see *Note Automatic
Overlay Debugging::.
`overlay load-target'
`overlay load'
Re-read the overlay table from the inferior. Normally, GDB
re-reads the table GDB automatically each time the inferior stops,
so this command should only be necessary if you have changed the
overlay mapping yourself using GDB. This command is only useful
when using automatic overlay debugging.
`overlay list-overlays'
`overlay list'
Display a list of the overlays currently mapped, along with their
mapped addresses, load addresses, and sizes.
Normally, when GDB prints a code address, it includes the name of
the function the address falls in:
(gdb) print main
$3 = {int ()} 0x11a0
When overlay debugging is enabled, GDB recognizes code in unmapped
overlays, and prints the names of unmapped functions with asterisks
around them. For example, if `foo' is a function in an unmapped
overlay, GDB prints it this way:
(gdb) overlay list
No sections are mapped.
(gdb) print foo
$5 = {int (int)} 0x100000 <*foo*>
When `foo''s overlay is mapped, GDB prints the function's name
normally:
(gdb) overlay list
Section .ov.foo.text, loaded at 0x100000 - 0x100034,
mapped at 0x1016 - 0x104a
(gdb) print foo
$6 = {int (int)} 0x1016
When overlay debugging is enabled, GDB can find the correct address
for functions and variables in an overlay, whether or not the overlay
is mapped. This allows most GDB commands, like `break' and
`disassemble', to work normally, even on unmapped code. However, GDB's
breakpoint support has some limitations:
* You can set breakpoints in functions in unmapped overlays, as long
as GDB can write to the overlay at its load address.
* GDB can not set hardware or simulator-based breakpoints in
unmapped overlays. However, if you set a breakpoint at the end of
your overlay manager (and tell GDB which overlays are now mapped,
if you are using manual overlay management), GDB will re-set its
breakpoints properly.
File: gdb.info, Node: Automatic Overlay Debugging, Next: Overlay Sample Program, Prev: Overlay Commands, Up: Overlays
11.3 Automatic Overlay Debugging
================================
GDB can automatically track which overlays are mapped and which are
not, given some simple co-operation from the overlay manager in the
inferior. If you enable automatic overlay debugging with the `overlay
auto' command (*note Overlay Commands::), GDB looks in the inferior's
memory for certain variables describing the current state of the
overlays.
Here are the variables your overlay manager must define to support
GDB's automatic overlay debugging:
`_ovly_table':
This variable must be an array of the following structures:
struct
{
/* The overlay's mapped address. */
unsigned long vma;
/* The size of the overlay, in bytes. */
unsigned long size;
/* The overlay's load address. */
unsigned long lma;
/* Non-zero if the overlay is currently mapped;
zero otherwise. */
unsigned long mapped;
}
`_novlys':
This variable must be a four-byte signed integer, holding the total
number of elements in `_ovly_table'.
To decide whether a particular overlay is mapped or not, GDB looks
for an entry in `_ovly_table' whose `vma' and `lma' members equal the
VMA and LMA of the overlay's section in the executable file. When GDB
finds a matching entry, it consults the entry's `mapped' member to
determine whether the overlay is currently mapped.
In addition, your overlay manager may define a function called
`_ovly_debug_event'. If this function is defined, GDB will silently
set a breakpoint there. If the overlay manager then calls this
function whenever it has changed the overlay table, this will enable
GDB to accurately keep track of which overlays are in program memory,
and update any breakpoints that may be set in overlays. This will
allow breakpoints to work even if the overlays are kept in ROM or other
non-writable memory while they are not being executed.
File: gdb.info, Node: Overlay Sample Program, Prev: Automatic Overlay Debugging, Up: Overlays
11.4 Overlay Sample Program
===========================
When linking a program which uses overlays, you must place the overlays
at their load addresses, while relocating them to run at their mapped
addresses. To do this, you must write a linker script (*note Overlay
Description: (ld.info)Overlay Description.). Unfortunately, since
linker scripts are specific to a particular host system, target
architecture, and target memory layout, this manual cannot provide
portable sample code demonstrating GDB's overlay support.
However, the GDB source distribution does contain an overlaid
program, with linker scripts for a few systems, as part of its test
suite. The program consists of the following files from
`gdb/testsuite/gdb.base':
`overlays.c'
The main program file.
`ovlymgr.c'
A simple overlay manager, used by `overlays.c'.
`foo.c'
`bar.c'
`baz.c'
`grbx.c'
Overlay modules, loaded and used by `overlays.c'.
`d10v.ld'
`m32r.ld'
Linker scripts for linking the test program on the `d10v-elf' and
`m32r-elf' targets.
You can build the test program using the `d10v-elf' GCC
cross-compiler like this:
$ d10v-elf-gcc -g -c overlays.c
$ d10v-elf-gcc -g -c ovlymgr.c
$ d10v-elf-gcc -g -c foo.c
$ d10v-elf-gcc -g -c bar.c
$ d10v-elf-gcc -g -c baz.c
$ d10v-elf-gcc -g -c grbx.c
$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
baz.o grbx.o -Wl,-Td10v.ld -o overlays
The build process is identical for any other architecture, except
that you must substitute the appropriate compiler and linker script for
the target system for `d10v-elf-gcc' and `d10v.ld'.
File: gdb.info, Node: Languages, Next: Symbols, Prev: Overlays, Up: Top
12 Using GDB with Different Languages
*************************************
Although programming languages generally have common aspects, they are
rarely expressed in the same manner. For instance, in ANSI C,
dereferencing a pointer `p' is accomplished by `*p', but in Modula-2,
it is accomplished by `p^'. Values can also be represented (and
displayed) differently. Hex numbers in C appear as `0x1ae', while in
Modula-2 they appear as `1AEH'.
Language-specific information is built into GDB for some languages,
allowing you to express operations like the above in your program's
native language, and allowing GDB to output values in a manner
consistent with the syntax of your program's native language. The
language you use to build expressions is called the "working language".
* Menu:
* Setting:: Switching between source languages
* Show:: Displaying the language
* Checks:: Type and range checks
* Support:: Supported languages
* Unsupported languages:: Unsupported languages
File: gdb.info, Node: Setting, Next: Show, Up: Languages
12.1 Switching between source languages
=======================================
There are two ways to control the working language--either have GDB set
it automatically, or select it manually yourself. You can use the `set
language' command for either purpose. On startup, GDB defaults to
setting the language automatically. The working language is used to
determine how expressions you type are interpreted, how values are
printed, etc.
In addition to the working language, every source file that GDB
knows about has its own working language. For some object file
formats, the compiler might indicate which language a particular source
file is in. However, most of the time GDB infers the language from the
name of the file. The language of a source file controls whether C++
names are demangled--this way `backtrace' can show each frame
appropriately for its own language. There is no way to set the
language of a source file from within GDB, but you can set the language
associated with a filename extension. *Note Displaying the language:
Show.
This is most commonly a problem when you use a program, such as
`cfront' or `f2c', that generates C but is written in another language.
In that case, make the program use `#line' directives in its C output;
that way GDB will know the correct language of the source code of the
original program, and will display that source code, not the generated
C code.
* Menu:
* Filenames:: Filename extensions and languages.
* Manually:: Setting the working language manually
* Automatically:: Having GDB infer the source language
File: gdb.info, Node: Filenames, Next: Manually, Up: Setting
12.1.1 List of filename extensions and languages
------------------------------------------------
If a source file name ends in one of the following extensions, then GDB
infers that its language is the one indicated.
`.ada'
`.ads'
`.adb'
`.a'
Ada source file.
`.c'
C source file
`.C'
`.cc'
`.cp'
`.cpp'
`.cxx'
`.c++'
C++ source file
`.m'
Objective-C source file
`.f'
`.F'
Fortran source file
`.mod'
Modula-2 source file
`.s'
`.S'
Assembler source file. This actually behaves almost like C, but
GDB does not skip over function prologues when stepping.
In addition, you may set the language associated with a filename
extension. *Note Displaying the language: Show.
File: gdb.info, Node: Manually, Next: Automatically, Prev: Filenames, Up: Setting
12.1.2 Setting the working language
-----------------------------------
If you allow GDB to set the language automatically, expressions are
interpreted the same way in your debugging session and your program.
If you wish, you may set the language manually. To do this, issue
the command `set language LANG', where LANG is the name of a language,
such as `c' or `modula-2'. For a list of the supported languages, type
`set language'.
Setting the language manually prevents GDB from updating the working
language automatically. This can lead to confusion if you try to debug
a program when the working language is not the same as the source
language, when an expression is acceptable to both languages--but means
different things. For instance, if the current source file were
written in C, and GDB was parsing Modula-2, a command such as:
print a = b + c
might not have the effect you intended. In C, this means to add `b'
and `c' and place the result in `a'. The result printed would be the
value of `a'. In Modula-2, this means to compare `a' to the result of
`b+c', yielding a `BOOLEAN' value.
File: gdb.info, Node: Automatically, Prev: Manually, Up: Setting
12.1.3 Having GDB infer the source language
-------------------------------------------
To have GDB set the working language automatically, use `set language
local' or `set language auto'. GDB then infers the working language.
That is, when your program stops in a frame (usually by encountering a
breakpoint), GDB sets the working language to the language recorded for
the function in that frame. If the language for a frame is unknown
(that is, if the function or block corresponding to the frame was
defined in a source file that does not have a recognized extension),
the current working language is not changed, and GDB issues a warning.
This may not seem necessary for most programs, which are written
entirely in one source language. However, program modules and libraries
written in one source language can be used by a main program written in
a different source language. Using `set language auto' in this case
frees you from having to set the working language manually.
File: gdb.info, Node: Show, Next: Checks, Prev: Setting, Up: Languages
12.2 Displaying the language
============================
The following commands help you find out which language is the working
language, and also what language source files were written in.
`show language'
Display the current working language. This is the language you
can use with commands such as `print' to build and compute
expressions that may involve variables in your program.
`info frame'
Display the source language for this frame. This language becomes
the working language if you use an identifier from this frame.
*Note Information about a frame: Frame Info, to identify the other
information listed here.
`info source'
Display the source language of this source file. *Note Examining
the Symbol Table: Symbols, to identify the other information
listed here.
In unusual circumstances, you may have source files with extensions
not in the standard list. You can then set the extension associated
with a language explicitly:
`set extension-language .EXT LANGUAGE'
Set source files with extension .EXT to be assumed to be in the
source language LANGUAGE.
`info extensions'
List all the filename extensions and the associated languages.
File: gdb.info, Node: Checks, Next: Support, Prev: Show, Up: Languages
12.3 Type and range checking
============================
_Warning:_ In this release, the GDB commands for type and range
checking are included, but they do not yet have any effect. This
section documents the intended facilities.
Some languages are designed to guard you against making seemingly
common errors through a series of compile- and run-time checks. These
include checking the type of arguments to functions and operators, and
making sure mathematical overflows are caught at run time. Checks such
as these help to ensure a program's correctness once it has been
compiled by eliminating type mismatches, and providing active checks
for range errors when your program is running.
GDB can check for conditions like the above if you wish. Although
GDB does not check the statements in your program, it can check
expressions entered directly into GDB for evaluation via the `print'
command, for example. As with the working language, GDB can also
decide whether or not to check automatically based on your program's
source language. *Note Supported languages: Support, for the default
settings of supported languages.
* Menu:
* Type Checking:: An overview of type checking
* Range Checking:: An overview of range checking
File: gdb.info, Node: Type Checking, Next: Range Checking, Up: Checks
12.3.1 An overview of type checking
-----------------------------------
Some languages, such as Modula-2, are strongly typed, meaning that the
arguments to operators and functions have to be of the correct type,
otherwise an error occurs. These checks prevent type mismatch errors
from ever causing any run-time problems. For example,
1 + 2 => 3
but
error--> 1 + 2.3
The second example fails because the `CARDINAL' 1 is not
type-compatible with the `REAL' 2.3.
For the expressions you use in GDB commands, you can tell the GDB
type checker to skip checking; to treat any mismatches as errors and
abandon the expression; or to only issue warnings when type mismatches
occur, but evaluate the expression anyway. When you choose the last of
these, GDB evaluates expressions like the second example above, but
also issues a warning.
Even if you turn type checking off, there may be other reasons
related to type that prevent GDB from evaluating an expression. For
instance, GDB does not know how to add an `int' and a `struct foo'.
These particular type errors have nothing to do with the language in
use, and usually arise from expressions, such as the one described
above, which make little sense to evaluate anyway.
Each language defines to what degree it is strict about type. For
instance, both Modula-2 and C require the arguments to arithmetical
operators to be numbers. In C, enumerated types and pointers can be
represented as numbers, so that they are valid arguments to mathematical
operators. *Note Supported languages: Support, for further details on
specific languages.
GDB provides some additional commands for controlling the type
checker:
`set check type auto'
Set type checking on or off based on the current working language.
*Note Supported languages: Support, for the default settings for
each language.
`set check type on'
`set check type off'
Set type checking on or off, overriding the default setting for the
current working language. Issue a warning if the setting does not
match the language default. If any type mismatches occur in
evaluating an expression while type checking is on, GDB prints a
message and aborts evaluation of the expression.
`set check type warn'
Cause the type checker to issue warnings, but to always attempt to
evaluate the expression. Evaluating the expression may still be
impossible for other reasons. For example, GDB cannot add numbers
and structures.
`show type'
Show the current setting of the type checker, and whether or not
GDB is setting it automatically.
File: gdb.info, Node: Range Checking, Prev: Type Checking, Up: Checks
12.3.2 An overview of range checking
------------------------------------
In some languages (such as Modula-2), it is an error to exceed the
bounds of a type; this is enforced with run-time checks. Such range
checking is meant to ensure program correctness by making sure
computations do not overflow, or indices on an array element access do
not exceed the bounds of the array.
For expressions you use in GDB commands, you can tell GDB to treat
range errors in one of three ways: ignore them, always treat them as
errors and abandon the expression, or issue warnings but evaluate the
expression anyway.
A range error can result from numerical overflow, from exceeding an
array index bound, or when you type a constant that is not a member of
any type. Some languages, however, do not treat overflows as an error.
In many implementations of C, mathematical overflow causes the result
to "wrap around" to lower values--for example, if M is the largest
integer value, and S is the smallest, then
M + 1 => S
This, too, is specific to individual languages, and in some cases
specific to individual compilers or machines. *Note Supported
languages: Support, for further details on specific languages.
GDB provides some additional commands for controlling the range
checker:
`set check range auto'
Set range checking on or off based on the current working language.
*Note Supported languages: Support, for the default settings for
each language.
`set check range on'
`set check range off'
Set range checking on or off, overriding the default setting for
the current working language. A warning is issued if the setting
does not match the language default. If a range error occurs and
range checking is on, then a message is printed and evaluation of
the expression is aborted.
`set check range warn'
Output messages when the GDB range checker detects a range error,
but attempt to evaluate the expression anyway. Evaluating the
expression may still be impossible for other reasons, such as
accessing memory that the process does not own (a typical example
from many Unix systems).
`show range'
Show the current setting of the range checker, and whether or not
it is being set automatically by GDB.
File: gdb.info, Node: Support, Next: Unsupported languages, Prev: Checks, Up: Languages
12.4 Supported languages
========================
GDB supports C, C++, Objective-C, Fortran, Java, assembly, Modula-2,
and Ada. Some GDB features may be used in expressions regardless of the
language you use: the GDB `@' and `::' operators, and the `{type}addr'
construct (*note Expressions: Expressions.) can be used with the
constructs of any supported language.
The following sections detail to what degree each source language is
supported by GDB. These sections are not meant to be language
tutorials or references, but serve only as a reference guide to what the
GDB expression parser accepts, and what input and output formats should
look like for different languages. There are many good books written
on each of these languages; please look to these for a language
reference or tutorial.
* Menu:
* C:: C and C++
* Objective-C:: Objective-C
* Modula-2:: Modula-2
* Ada:: Ada
File: gdb.info, Node: C, Next: Objective-C, Up: Support
12.4.1 C and C++
----------------
Since C and C++ are so closely related, many features of GDB apply to
both languages. Whenever this is the case, we discuss those languages
together.
The C++ debugging facilities are jointly implemented by the C++
compiler and GDB. Therefore, to debug your C++ code effectively, you
must compile your C++ programs with a supported C++ compiler, such as
GNU `g++', or the HP ANSI C++ compiler (`aCC').
For best results when using GNU C++, use the DWARF 2 debugging
format; if it doesn't work on your system, try the stabs+ debugging
format. You can select those formats explicitly with the `g++'
command-line options `-gdwarf-2' and `-gstabs+'. *Note Options for
Debugging Your Program or GNU CC: (gcc.info)Debugging Options.
* Menu:
* C Operators:: C and C++ operators
* C Constants:: C and C++ constants
* C plus plus expressions:: C++ expressions
* C Defaults:: Default settings for C and C++
* C Checks:: C and C++ type and range checks
* Debugging C:: GDB and C
* Debugging C plus plus:: GDB features for C++
File: gdb.info, Node: C Operators, Next: C Constants, Up: C
12.4.1.1 C and C++ operators
............................
Operators must be defined on values of specific types. For instance,
`+' is defined on numbers, but not on structures. Operators are often
defined on groups of types.
For the purposes of C and C++, the following definitions hold:
* _Integral types_ include `int' with any of its storage-class
specifiers; `char'; `enum'; and, for C++, `bool'.
* _Floating-point types_ include `float', `double', and `long
double' (if supported by the target platform).
* _Pointer types_ include all types defined as `(TYPE *)'.
* _Scalar types_ include all of the above.
The following operators are supported. They are listed here in order
of increasing precedence:
`,'
The comma or sequencing operator. Expressions in a
comma-separated list are evaluated from left to right, with the
result of the entire expression being the last expression
evaluated.
`='
Assignment. The value of an assignment expression is the value
assigned. Defined on scalar types.
`OP='
Used in an expression of the form `A OP= B', and translated to
`A = A OP B'. `OP=' and `=' have the same precedence. OP is any
one of the operators `|', `^', `&', `<<', `>>', `+', `-', `*',
`/', `%'.
`?:'
The ternary operator. `A ? B : C' can be thought of as: if A
then B else C. A should be of an integral type.
`||'
Logical OR. Defined on integral types.
`&&'
Logical AND. Defined on integral types.
`|'
Bitwise OR. Defined on integral types.
`^'
Bitwise exclusive-OR. Defined on integral types.
`&'
Bitwise AND. Defined on integral types.
`==, !='
Equality and inequality. Defined on scalar types. The value of
these expressions is 0 for false and non-zero for true.
`<, >, <=, >='
Less than, greater than, less than or equal, greater than or equal.
Defined on scalar types. The value of these expressions is 0 for
false and non-zero for true.
`<<, >>'
left shift, and right shift. Defined on integral types.
`@'
The GDB "artificial array" operator (*note Expressions:
Expressions.).
`+, -'
Addition and subtraction. Defined on integral types,
floating-point types and pointer types.
`*, /, %'
Multiplication, division, and modulus. Multiplication and
division are defined on integral and floating-point types.
Modulus is defined on integral types.
`++, --'
Increment and decrement. When appearing before a variable, the
operation is performed before the variable is used in an
expression; when appearing after it, the variable's value is used
before the operation takes place.
`*'
Pointer dereferencing. Defined on pointer types. Same precedence
as `++'.
`&'
Address operator. Defined on variables. Same precedence as `++'.
For debugging C++, GDB implements a use of `&' beyond what is
allowed in the C++ language itself: you can use `&(&REF)' (or, if
you prefer, simply `&&REF') to examine the address where a C++
reference variable (declared with `&REF') is stored.
`-'
Negative. Defined on integral and floating-point types. Same
precedence as `++'.
`!'
Logical negation. Defined on integral types. Same precedence as
`++'.
`~'
Bitwise complement operator. Defined on integral types. Same
precedence as `++'.
`., ->'
Structure member, and pointer-to-structure member. For
convenience, GDB regards the two as equivalent, choosing whether
to dereference a pointer based on the stored type information.
Defined on `struct' and `union' data.
`.*, ->*'
Dereferences of pointers to members.
`[]'
Array indexing. `A[I]' is defined as `*(A+I)'. Same precedence
as `->'.
`()'
Function parameter list. Same precedence as `->'.
`::'
C++ scope resolution operator. Defined on `struct', `union', and
`class' types.
`::'
Doubled colons also represent the GDB scope operator (*note
Expressions: Expressions.). Same precedence as `::', above.
If an operator is redefined in the user code, GDB usually attempts
to invoke the redefined version instead of using the operator's
predefined meaning.
* Menu:
* C Constants::
File: gdb.info, Node: C Constants, Next: C plus plus expressions, Prev: C Operators, Up: C
12.4.1.2 C and C++ constants
............................
GDB allows you to express the constants of C and C++ in the following
ways:
* Integer constants are a sequence of digits. Octal constants are
specified by a leading `0' (i.e. zero), and hexadecimal constants
by a leading `0x' or `0X'. Constants may also end with a letter
`l', specifying that the constant should be treated as a `long'
value.
* Floating point constants are a sequence of digits, followed by a
decimal point, followed by a sequence of digits, and optionally
followed by an exponent. An exponent is of the form:
`e[[+]|-]NNN', where NNN is another sequence of digits. The `+'
is optional for positive exponents. A floating-point constant may
also end with a letter `f' or `F', specifying that the constant
should be treated as being of the `float' (as opposed to the
default `double') type; or with a letter `l' or `L', which
specifies a `long double' constant.
* Enumerated constants consist of enumerated identifiers, or their
integral equivalents.
* Character constants are a single character surrounded by single
quotes (`''), or a number--the ordinal value of the corresponding
character (usually its ASCII value). Within quotes, the single
character may be represented by a letter or by "escape sequences",
which are of the form `\NNN', where NNN is the octal representation
of the character's ordinal value; or of the form `\X', where `X'
is a predefined special character--for example, `\n' for newline.
* String constants are a sequence of character constants surrounded
by double quotes (`"'). Any valid character constant (as described
above) may appear. Double quotes within the string must be
preceded by a backslash, so for instance `"a\"b'c"' is a string of
five characters.
* Pointer constants are an integral value. You can also write
pointers to constants using the C operator `&'.
* Array constants are comma-separated lists surrounded by braces `{'
and `}'; for example, `{1,2,3}' is a three-element array of
integers, `{{1,2}, {3,4}, {5,6}}' is a three-by-two array, and
`{&"hi", &"there", &"fred"}' is a three-element array of pointers.
* Menu:
* C plus plus expressions::
* C Defaults::
* C Checks::
* Debugging C::
File: gdb.info, Node: C plus plus expressions, Next: C Defaults, Prev: C Constants, Up: C
12.4.1.3 C++ expressions
........................
GDB expression handling can interpret most C++ expressions.
_Warning:_ GDB can only debug C++ code if you use the proper
compiler and the proper debug format. Currently, GDB works best
when debugging C++ code that is compiled with GCC 2.95.3 or with
GCC 3.1 or newer, using the options `-gdwarf-2' or `-gstabs+'.
DWARF 2 is preferred over stabs+. Most configurations of GCC emit
either DWARF 2 or stabs+ as their default debug format, so you
usually don't need to specify a debug format explicitly. Other
compilers and/or debug formats are likely to work badly or not at
all when using GDB to debug C++ code.
1. Member function calls are allowed; you can use expressions like
count = aml->GetOriginal(x, y)
2. While a member function is active (in the selected stack frame),
your expressions have the same namespace available as the member
function; that is, GDB allows implicit references to the class
instance pointer `this' following the same rules as C++.
3. You can call overloaded functions; GDB resolves the function call
to the right definition, with some restrictions. GDB does not
perform overload resolution involving user-defined type
conversions, calls to constructors, or instantiations of templates
that do not exist in the program. It also cannot handle ellipsis
argument lists or default arguments.
It does perform integral conversions and promotions, floating-point
promotions, arithmetic conversions, pointer conversions,
conversions of class objects to base classes, and standard
conversions such as those of functions or arrays to pointers; it
requires an exact match on the number of function arguments.
Overload resolution is always performed, unless you have specified
`set overload-resolution off'. *Note GDB features for C++:
Debugging C plus plus.
You must specify `set overload-resolution off' in order to use an
explicit function signature to call an overloaded function, as in
p 'foo(char,int)'('x', 13)
The GDB command-completion facility can simplify this; see *Note
Command completion: Completion.
4. GDB understands variables declared as C++ references; you can use
them in expressions just as you do in C++ source--they are
automatically dereferenced.
In the parameter list shown when GDB displays a frame, the values
of reference variables are not displayed (unlike other variables);
this avoids clutter, since references are often used for large
structures. The _address_ of a reference variable is always
shown, unless you have specified `set print address off'.
5. GDB supports the C++ name resolution operator `::'--your
expressions can use it just as expressions in your program do.
Since one scope may be defined in another, you can use `::'
repeatedly if necessary, for example in an expression like
`SCOPE1::SCOPE2::NAME'. GDB also allows resolving name scope by
reference to source files, in both C and C++ debugging (*note
Program variables: Variables.).
In addition, when used with HP's C++ compiler, GDB supports calling
virtual functions correctly, printing out virtual bases of objects,
calling functions in a base subobject, casting objects, and invoking
user-defined operators.
File: gdb.info, Node: C Defaults, Next: C Checks, Prev: C plus plus expressions, Up: C
12.4.1.4 C and C++ defaults
...........................
If you allow GDB to set type and range checking automatically, they
both default to `off' whenever the working language changes to C or
C++. This happens regardless of whether you or GDB selects the working
language.
If you allow GDB to set the language automatically, it recognizes
source files whose names end with `.c', `.C', or `.cc', etc, and when
GDB enters code compiled from one of these files, it sets the working
language to C or C++. *Note Having GDB infer the source language:
Automatically, for further details.
File: gdb.info, Node: C Checks, Next: Debugging C, Prev: C Defaults, Up: C
12.4.1.5 C and C++ type and range checks
........................................
By default, when GDB parses C or C++ expressions, type checking is not
used. However, if you turn type checking on, GDB considers two
variables type equivalent if:
* The two variables are structured and have the same structure,
union, or enumerated tag.
* The two variables have the same type name, or types that have been
declared equivalent through `typedef'.
Range checking, if turned on, is done on mathematical operations.
Array indices are not checked, since they are often used to index a
pointer that is not itself an array.
File: gdb.info, Node: Debugging C, Next: Debugging C plus plus, Prev: C Checks, Up: C
12.4.1.6 GDB and C
..................
The `set print union' and `show print union' commands apply to the
`union' type. When set to `on', any `union' that is inside a `struct'
or `class' is also printed. Otherwise, it appears as `{...}'.
The `@' operator aids in the debugging of dynamic arrays, formed
with pointers and a memory allocation function. *Note Expressions:
Expressions.
* Menu:
* Debugging C plus plus::
File: gdb.info, Node: Debugging C plus plus, Prev: Debugging C, Up: C
12.4.1.7 GDB features for C++
.............................
Some GDB commands are particularly useful with C++, and some are
designed specifically for use with C++. Here is a summary:
`breakpoint menus'
When you want a breakpoint in a function whose name is overloaded,
GDB breakpoint menus help you specify which function definition
you want. *Note Breakpoint menus: Breakpoint Menus.
`rbreak REGEX'
Setting breakpoints using regular expressions is helpful for
setting breakpoints on overloaded functions that are not members
of any special classes. *Note Setting breakpoints: Set Breaks.
`catch throw'
`catch catch'
Debug C++ exception handling using these commands. *Note Setting
catchpoints: Set Catchpoints.
`ptype TYPENAME'
Print inheritance relationships as well as other information for
type TYPENAME. *Note Examining the Symbol Table: Symbols.
`set print demangle'
`show print demangle'
`set print asm-demangle'
`show print asm-demangle'
Control whether C++ symbols display in their source form, both when
displaying code as C++ source and when displaying disassemblies.
*Note Print settings: Print Settings.
`set print object'
`show print object'
Choose whether to print derived (actual) or declared types of
objects. *Note Print settings: Print Settings.
`set print vtbl'
`show print vtbl'
Control the format for printing virtual function tables. *Note
Print settings: Print Settings. (The `vtbl' commands do not work
on programs compiled with the HP ANSI C++ compiler (`aCC').)
`set overload-resolution on'
Enable overload resolution for C++ expression evaluation. The
default is on. For overloaded functions, GDB evaluates the
arguments and searches for a function whose signature matches the
argument types, using the standard C++ conversion rules (see *Note
C++ expressions: C plus plus expressions, for details). If it
cannot find a match, it emits a message.
`set overload-resolution off'
Disable overload resolution for C++ expression evaluation. For
overloaded functions that are not class member functions, GDB
chooses the first function of the specified name that it finds in
the symbol table, whether or not its arguments are of the correct
type. For overloaded functions that are class member functions,
GDB searches for a function whose signature _exactly_ matches the
argument types.
`Overloaded symbol names'
You can specify a particular definition of an overloaded symbol,
using the same notation that is used to declare such symbols in
C++: type `SYMBOL(TYPES)' rather than just SYMBOL. You can also
use the GDB command-line word completion facilities to list the
available choices, or to finish the type list for you. *Note
Command completion: Completion, for details on how to do this.
File: gdb.info, Node: Objective-C, Next: Modula-2, Prev: C, Up: Support
12.4.2 Objective-C
------------------
This section provides information about some commands and command
options that are useful for debugging Objective-C code.
* Menu:
* Method Names in Commands::
* The Print Command with Objective-C::
File: gdb.info, Node: Method Names in Commands, Next: The Print Command with Objective-C, Prev: Objective-C, Up: Objective-C
12.4.2.1 Method Names in Commands
.................................
The following commands have been extended to accept Objective-C method
names as line specifications:
* `clear'
* `break'
* `info line'
* `jump'
* `list'
A fully qualified Objective-C method name is specified as
-[CLASS METHODNAME]
where the minus sign is used to indicate an instance method and a
plus sign (not shown) is used to indicate a class method. The class
name CLASS and method name METHODNAME are enclosed in brackets, similar
to the way messages are specified in Objective-C source code. For
example, to set a breakpoint at the `create' instance method of class
`Fruit' in the program currently being debugged, enter:
break -[Fruit create]
To list ten program lines around the `initialize' class method,
enter:
list +[NSText initialize]
In the current version of GDB, the plus or minus sign is required.
In future versions of GDB, the plus or minus sign will be optional, but
you can use it to narrow the search. It is also possible to specify
just a method name:
break create
You must specify the complete method name, including any colons. If
your program's source files contain more than one `create' method,
you'll be presented with a numbered list of classes that implement that
method. Indicate your choice by number, or type `0' to exit if none
apply.
As another example, to clear a breakpoint established at the
`makeKeyAndOrderFront:' method of the `NSWindow' class, enter:
clear -[NSWindow makeKeyAndOrderFront:]
File: gdb.info, Node: The Print Command with Objective-C, Prev: Method Names in Commands, Up: Objective-C
12.4.2.2 The Print Command With Objective-C
...........................................
The print command has also been extended to accept methods. For
example:
print -[OBJECT hash]
will tell GDB to send the `hash' message to OBJECT and print the
result. Also, an additional command has been added, `print-object' or
`po' for short, which is meant to print the description of an object.
However, this command may only work with certain Objective-C libraries
that have a particular hook function, `_NSPrintForDebugger', defined.
File: gdb.info, Node: Modula-2, Next: Ada, Prev: Objective-C, Up: Support
12.4.3 Modula-2
---------------
The extensions made to GDB to support Modula-2 only support output from
the GNU Modula-2 compiler (which is currently being developed). Other
Modula-2 compilers are not currently supported, and attempting to debug
executables produced by them is most likely to give an error as GDB
reads in the executable's symbol table.
* Menu:
* M2 Operators:: Built-in operators
* Built-In Func/Proc:: Built-in functions and procedures
* M2 Constants:: Modula-2 constants
* M2 Defaults:: Default settings for Modula-2
* Deviations:: Deviations from standard Modula-2
* M2 Checks:: Modula-2 type and range checks
* M2 Scope:: The scope operators `::' and `.'
* GDB/M2:: GDB and Modula-2
File: gdb.info, Node: M2 Operators, Next: Built-In Func/Proc, Up: Modula-2
12.4.3.1 Operators
..................
Operators must be defined on values of specific types. For instance,
`+' is defined on numbers, but not on structures. Operators are often
defined on groups of types. For the purposes of Modula-2, the
following definitions hold:
* _Integral types_ consist of `INTEGER', `CARDINAL', and their
subranges.
* _Character types_ consist of `CHAR' and its subranges.
* _Floating-point types_ consist of `REAL'.
* _Pointer types_ consist of anything declared as `POINTER TO TYPE'.
* _Scalar types_ consist of all of the above.
* _Set types_ consist of `SET' and `BITSET' types.
* _Boolean types_ consist of `BOOLEAN'.
The following operators are supported, and appear in order of
increasing precedence:
`,'
Function argument or array index separator.
`:='
Assignment. The value of VAR `:=' VALUE is VALUE.
`<, >'
Less than, greater than on integral, floating-point, or enumerated
types.
`<=, >='
Less than or equal to, greater than or equal to on integral,
floating-point and enumerated types, or set inclusion on set
types. Same precedence as `<'.
`=, <>, #'
Equality and two ways of expressing inequality, valid on scalar
types. Same precedence as `<'. In GDB scripts, only `<>' is
available for inequality, since `#' conflicts with the script
comment character.
`IN'
Set membership. Defined on set types and the types of their
members. Same precedence as `<'.
`OR'
Boolean disjunction. Defined on boolean types.
`AND, &'
Boolean conjunction. Defined on boolean types.
`@'
The GDB "artificial array" operator (*note Expressions:
Expressions.).
`+, -'
Addition and subtraction on integral and floating-point types, or
union and difference on set types.
`*'
Multiplication on integral and floating-point types, or set
intersection on set types.
`/'
Division on floating-point types, or symmetric set difference on
set types. Same precedence as `*'.
`DIV, MOD'
Integer division and remainder. Defined on integral types. Same
precedence as `*'.
`-'
Negative. Defined on `INTEGER' and `REAL' data.
`^'
Pointer dereferencing. Defined on pointer types.
`NOT'
Boolean negation. Defined on boolean types. Same precedence as
`^'.
`.'
`RECORD' field selector. Defined on `RECORD' data. Same
precedence as `^'.
`[]'
Array indexing. Defined on `ARRAY' data. Same precedence as `^'.
`()'
Procedure argument list. Defined on `PROCEDURE' objects. Same
precedence as `^'.
`::, .'
GDB and Modula-2 scope operators.
_Warning:_ Sets and their operations are not yet supported, so GDB
treats the use of the operator `IN', or the use of operators `+',
`-', `*', `/', `=', , `<>', `#', `<=', and `>=' on sets as an
error.
File: gdb.info, Node: Built-In Func/Proc, Next: M2 Constants, Prev: M2 Operators, Up: Modula-2
12.4.3.2 Built-in functions and procedures
..........................................
Modula-2 also makes available several built-in procedures and functions.
In describing these, the following metavariables are used:
A
represents an `ARRAY' variable.
C
represents a `CHAR' constant or variable.
I
represents a variable or constant of integral type.
M
represents an identifier that belongs to a set. Generally used in
the same function with the metavariable S. The type of S should
be `SET OF MTYPE' (where MTYPE is the type of M).
N
represents a variable or constant of integral or floating-point
type.
R
represents a variable or constant of floating-point type.
T
represents a type.
V
represents a variable.
X
represents a variable or constant of one of many types. See the
explanation of the function for details.
All Modula-2 built-in procedures also return a result, described
below.
`ABS(N)'
Returns the absolute value of N.
`CAP(C)'
If C is a lower case letter, it returns its upper case equivalent,
otherwise it returns its argument.
`CHR(I)'
Returns the character whose ordinal value is I.
`DEC(V)'
Decrements the value in the variable V by one. Returns the new
value.
`DEC(V,I)'
Decrements the value in the variable V by I. Returns the new
value.
`EXCL(M,S)'
Removes the element M from the set S. Returns the new set.
`FLOAT(I)'
Returns the floating point equivalent of the integer I.
`HIGH(A)'
Returns the index of the last member of A.
`INC(V)'
Increments the value in the variable V by one. Returns the new
value.
`INC(V,I)'
Increments the value in the variable V by I. Returns the new
value.
`INCL(M,S)'
Adds the element M to the set S if it is not already there.
Returns the new set.
`MAX(T)'
Returns the maximum value of the type T.
`MIN(T)'
Returns the minimum value of the type T.
`ODD(I)'
Returns boolean TRUE if I is an odd number.
`ORD(X)'
Returns the ordinal value of its argument. For example, the
ordinal value of a character is its ASCII value (on machines
supporting the ASCII character set). X must be of an ordered
type, which include integral, character and enumerated types.
`SIZE(X)'
Returns the size of its argument. X can be a variable or a type.
`TRUNC(R)'
Returns the integral part of R.
`VAL(T,I)'
Returns the member of the type T whose ordinal value is I.
_Warning:_ Sets and their operations are not yet supported, so
GDB treats the use of procedures `INCL' and `EXCL' as an error.
File: gdb.info, Node: M2 Constants, Next: M2 Defaults, Prev: Built-In Func/Proc, Up: Modula-2
12.4.3.3 Constants
..................
GDB allows you to express the constants of Modula-2 in the following
ways:
* Integer constants are simply a sequence of digits. When used in an
expression, a constant is interpreted to be type-compatible with
the rest of the expression. Hexadecimal integers are specified by
a trailing `H', and octal integers by a trailing `B'.
* Floating point constants appear as a sequence of digits, followed
by a decimal point and another sequence of digits. An optional
exponent can then be specified, in the form `E[+|-]NNN', where
`[+|-]NNN' is the desired exponent. All of the digits of the
floating point constant must be valid decimal (base 10) digits.
* Character constants consist of a single character enclosed by a
pair of like quotes, either single (`'') or double (`"'). They may
also be expressed by their ordinal value (their ASCII value,
usually) followed by a `C'.
* String constants consist of a sequence of characters enclosed by a
pair of like quotes, either single (`'') or double (`"'). Escape
sequences in the style of C are also allowed. *Note C and C++
constants: C Constants, for a brief explanation of escape
sequences.
* Enumerated constants consist of an enumerated identifier.
* Boolean constants consist of the identifiers `TRUE' and `FALSE'.
* Pointer constants consist of integral values only.
* Set constants are not yet supported.
File: gdb.info, Node: M2 Defaults, Next: Deviations, Prev: M2 Constants, Up: Modula-2
12.4.3.4 Modula-2 defaults
..........................
If type and range checking are set automatically by GDB, they both
default to `on' whenever the working language changes to Modula-2.
This happens regardless of whether you or GDB selected the working
language.
If you allow GDB to set the language automatically, then entering
code compiled from a file whose name ends with `.mod' sets the working
language to Modula-2. *Note Having GDB set the language automatically:
Automatically, for further details.
File: gdb.info, Node: Deviations, Next: M2 Checks, Prev: M2 Defaults, Up: Modula-2
12.4.3.5 Deviations from standard Modula-2
..........................................
A few changes have been made to make Modula-2 programs easier to debug.
This is done primarily via loosening its type strictness:
* Unlike in standard Modula-2, pointer constants can be formed by
integers. This allows you to modify pointer variables during
debugging. (In standard Modula-2, the actual address contained in
a pointer variable is hidden from you; it can only be modified
through direct assignment to another pointer variable or
expression that returned a pointer.)
* C escape sequences can be used in strings and characters to
represent non-printable characters. GDB prints out strings with
these escape sequences embedded. Single non-printable characters
are printed using the `CHR(NNN)' format.
* The assignment operator (`:=') returns the value of its right-hand
argument.
* All built-in procedures both modify _and_ return their argument.
File: gdb.info, Node: M2 Checks, Next: M2 Scope, Prev: Deviations, Up: Modula-2
12.4.3.6 Modula-2 type and range checks
.......................................
_Warning:_ in this release, GDB does not yet perform type or range
checking.
GDB considers two Modula-2 variables type equivalent if:
* They are of types that have been declared equivalent via a `TYPE
T1 = T2' statement
* They have been declared on the same line. (Note: This is true of
the GNU Modula-2 compiler, but it may not be true of other
compilers.)
As long as type checking is enabled, any attempt to combine variables
whose types are not equivalent is an error.
Range checking is done on all mathematical operations, assignment,
array index bounds, and all built-in functions and procedures.
File: gdb.info, Node: M2 Scope, Next: GDB/M2, Prev: M2 Checks, Up: Modula-2
12.4.3.7 The scope operators `::' and `.'
.........................................
There are a few subtle differences between the Modula-2 scope operator
(`.') and the GDB scope operator (`::'). The two have similar syntax:
MODULE . ID
SCOPE :: ID
where SCOPE is the name of a module or a procedure, MODULE the name of
a module, and ID is any declared identifier within your program, except
another module.
Using the `::' operator makes GDB search the scope specified by
SCOPE for the identifier ID. If it is not found in the specified
scope, then GDB searches all scopes enclosing the one specified by
SCOPE.
Using the `.' operator makes GDB search the current scope for the
identifier specified by ID that was imported from the definition module
specified by MODULE. With this operator, it is an error if the
identifier ID was not imported from definition module MODULE, or if ID
is not an identifier in MODULE.
File: gdb.info, Node: GDB/M2, Prev: M2 Scope, Up: Modula-2
12.4.3.8 GDB and Modula-2
.........................
Some GDB commands have little use when debugging Modula-2 programs.
Five subcommands of `set print' and `show print' apply specifically to
C and C++: `vtbl', `demangle', `asm-demangle', `object', and `union'.
The first four apply to C++, and the last to the C `union' type, which
has no direct analogue in Modula-2.
The `@' operator (*note Expressions: Expressions.), while available
with any language, is not useful with Modula-2. Its intent is to aid
the debugging of "dynamic arrays", which cannot be created in Modula-2
as they can in C or C++. However, because an address can be specified
by an integral constant, the construct `{TYPE}ADREXP' is still useful.
In GDB scripts, the Modula-2 inequality operator `#' is interpreted
as the beginning of a comment. Use `<>' instead.
File: gdb.info, Node: Ada, Prev: Modula-2, Up: Support
12.4.4 Ada
----------
The extensions made to GDB for Ada only support output from the GNU Ada
(GNAT) compiler. Other Ada compilers are not currently supported, and
attempting to debug executables produced by them is most likely to be
difficult.
* Menu:
* Ada Mode Intro:: General remarks on the Ada syntax
and semantics supported by Ada mode
in GDB.
* Omissions from Ada:: Restrictions on the Ada expression syntax.
* Additions to Ada:: Extensions of the Ada expression syntax.
* Stopping Before Main Program:: Debugging the program during elaboration.
* Ada Glitches:: Known peculiarities of Ada mode.
File: gdb.info, Node: Ada Mode Intro, Next: Omissions from Ada, Up: Ada
12.4.4.1 Introduction
.....................
The Ada mode of GDB supports a fairly large subset of Ada expression
syntax, with some extensions. The philosophy behind the design of this
subset is
* That GDB should provide basic literals and access to operations for
arithmetic, dereferencing, field selection, indexing, and
subprogram calls, leaving more sophisticated computations to
subprograms written into the program (which therefore may be
called from GDB).
* That type safety and strict adherence to Ada language restrictions
are not particularly important to the GDB user.
* That brevity is important to the GDB user.
Thus, for brevity, the debugger acts as if there were implicit
`with' and `use' clauses in effect for all user-written packages,
making it unnecessary to fully qualify most names with their packages,
regardless of context. Where this causes ambiguity, GDB asks the
user's intent.
The debugger will start in Ada mode if it detects an Ada main
program. As for other languages, it will enter Ada mode when stopped
in a program that was translated from an Ada source file.
While in Ada mode, you may use `-' for comments. This is useful
mostly for documenting command files. The standard GDB comment (`#')
still works at the beginning of a line in Ada mode, but not in the
middle (to allow based literals).
The debugger supports limited overloading. Given a subprogram call
in which the function symbol has multiple definitions, it will use the
number of actual parameters and some information about their types to
attempt to narrow the set of definitions. It also makes very limited
use of context, preferring procedures to functions in the context of
the `call' command, and functions to procedures elsewhere.
File: gdb.info, Node: Omissions from Ada, Next: Additions to Ada, Prev: Ada Mode Intro, Up: Ada
12.4.4.2 Omissions from Ada
...........................
Here are the notable omissions from the subset:
* Only a subset of the attributes are supported:
- 'First, 'Last, and 'Length on array objects (not on types
and subtypes).
- 'Min and 'Max.
- 'Pos and 'Val.
- 'Tag.
- 'Range on array objects (not subtypes), but only as the right
operand of the membership (`in') operator.
- 'Access, 'Unchecked_Access, and 'Unrestricted_Access (a GNAT
extension).
- 'Address.
* The names in `Characters.Latin_1' are not available and
concatenation is not implemented. Thus, escape characters in
strings are not currently available.
* Equality tests (`=' and `/=') on arrays test for bitwise equality
of representations. They will generally work correctly for
strings and arrays whose elements have integer or enumeration
types. They may not work correctly for arrays whose element types
have user-defined equality, for arrays of real values (in
particular, IEEE-conformant floating point, because of negative
zeroes and NaNs), and for arrays whose elements contain unused
bits with indeterminate values.
* The other component-by-component array operations (`and', `or',
`xor', `not', and relational tests other than equality) are not
implemented.
* There are no record or array aggregates.
* Calls to dispatching subprograms are not implemented.
* The overloading algorithm is much more limited (i.e., less
selective) than that of real Ada. It makes only limited use of
the context in which a subexpression appears to resolve its
meaning, and it is much looser in its rules for allowing type
matches. As a result, some function calls will be ambiguous, and
the user will be asked to choose the proper resolution.
* The `new' operator is not implemented.
* Entry calls are not implemented.
* Aside from printing, arithmetic operations on the native VAX
floating-point formats are not supported.
* It is not possible to slice a packed array.
File: gdb.info, Node: Additions to Ada, Next: Stopping Before Main Program, Prev: Omissions from Ada, Up: Ada
12.4.4.3 Additions to Ada
.........................
As it does for other languages, GDB makes certain generic extensions to
Ada (*note Expressions::):
* If the expression E is a variable residing in memory (typically a
local variable or array element) and N is a positive integer, then
`E@N' displays the values of E and the N-1 adjacent variables
following it in memory as an array. In Ada, this operator is
generally not necessary, since its prime use is in displaying
parts of an array, and slicing will usually do this in Ada.
However, there are occasional uses when debugging programs in
which certain debugging information has been optimized away.
* `B::VAR' means "the variable named VAR that appears in function or
file B." When B is a file name, you must typically surround it in
single quotes.
* The expression `{TYPE} ADDR' means "the variable of type TYPE that
appears at address ADDR."
* A name starting with `$' is a convenience variable (*note
Convenience Vars::) or a machine register (*note Registers::).
In addition, GDB provides a few other shortcuts and outright
additions specific to Ada:
* The assignment statement is allowed as an expression, returning
its right-hand operand as its value. Thus, you may enter
set x := y + 3
print A(tmp := y + 1)
* The semicolon is allowed as an "operator," returning as its value
the value of its right-hand operand. This allows, for example,
complex conditional breaks:
break f
condition 1 (report(i); k += 1; A(k) > 100)
* Rather than use catenation and symbolic character names to
introduce special characters into strings, one may instead use a
special bracket notation, which is also used to print strings. A
sequence of characters of the form `["XX"]' within a string or
character literal denotes the (single) character whose numeric
encoding is XX in hexadecimal. The sequence of characters `["""]'
also denotes a single quotation mark in strings. For example,
"One line.["0a"]Next line.["0a"]"
contains an ASCII newline character (`Ada.Characters.Latin_1.LF')
after each period.
* The subtype used as a prefix for the attributes 'Pos, 'Min, and
'Max is optional (and is ignored in any case). For example, it is
valid to write
print 'max(x, y)
* When printing arrays, GDB uses positional notation when the array
has a lower bound of 1, and uses a modified named notation
otherwise. For example, a one-dimensional array of three integers
with a lower bound of 3 might print as
(3 => 10, 17, 1)
That is, in contrast to valid Ada, only the first component has a
`=>' clause.
* You may abbreviate attributes in expressions with any unique,
multi-character subsequence of their names (an exact match gets
preference). For example, you may use a'len, a'gth, or a'lh in
place of a'length.
* Since Ada is case-insensitive, the debugger normally maps
identifiers you type to lower case. The GNAT compiler uses
upper-case characters for some of its internal identifiers, which
are normally of no interest to users. For the rare occasions when
you actually have to look at them, enclose them in angle brackets
to avoid the lower-case mapping. For example,
gdb print [0]
* Printing an object of class-wide type or dereferencing an
access-to-class-wide value will display all the components of the
object's specific type (as indicated by its run-time tag).
Likewise, component selection on such a value will operate on the
specific type of the object.
File: gdb.info, Node: Stopping Before Main Program, Next: Ada Glitches, Prev: Additions to Ada, Up: Ada
12.4.4.4 Stopping at the Very Beginning
.......................................
It is sometimes necessary to debug the program during elaboration, and
before reaching the main procedure. As defined in the Ada Reference
Manual, the elaboration code is invoked from a procedure called
`adainit'. To run your program up to the beginning of elaboration,
simply use the following two commands: `tbreak adainit' and `run'.
File: gdb.info, Node: Ada Glitches, Prev: Stopping Before Main Program, Up: Ada
12.4.4.5 Known Peculiarities of Ada Mode
........................................
Besides the omissions listed previously (*note Omissions from Ada::),
we know of several problems with and limitations of Ada mode in GDB,
some of which will be fixed with planned future releases of the debugger
and the GNU Ada compiler.
* Currently, the debugger has insufficient information to determine
whether certain pointers represent pointers to objects or the
objects themselves. Thus, the user may have to tack an extra
`.all' after an expression to get it printed properly.
* Static constants that the compiler chooses not to materialize as
objects in storage are invisible to the debugger.
* Named parameter associations in function argument lists are
ignored (the argument lists are treated as positional).
* Many useful library packages are currently invisible to the
debugger.
* Fixed-point arithmetic, conversions, input, and output is carried
out using floating-point arithmetic, and may give results that
only approximate those on the host machine.
* The type of the 'Address attribute may not be `System.Address'.
* The GNAT compiler never generates the prefix `Standard' for any of
the standard symbols defined by the Ada language. GDB knows about
this: it will strip the prefix from names when you use it, and
will never look for a name you have so qualified among local
symbols, nor match against symbols in other packages or
subprograms. If you have defined entities anywhere in your
program other than parameters and local variables whose simple
names match names in `Standard', GNAT's lack of qualification here
can cause confusion. When this happens, you can usually resolve
the confusion by qualifying the problematic names with package
`Standard' explicitly.
File: gdb.info, Node: Unsupported languages, Prev: Support, Up: Languages
12.5 Unsupported languages
==========================
In addition to the other fully-supported programming languages, GDB
also provides a pseudo-language, called `minimal'. It does not
represent a real programming language, but provides a set of
capabilities close to what the C or assembly languages provide. This
should allow most simple operations to be performed while debugging an
application that uses a language currently not supported by GDB.
If the language is set to `auto', GDB will automatically select this
language if the current frame corresponds to an unsupported language.
File: gdb.info, Node: Symbols, Next: Altering, Prev: Languages, Up: Top
13 Examining the Symbol Table
*****************************
The commands described in this chapter allow you to inquire about the
symbols (names of variables, functions and types) defined in your
program. This information is inherent in the text of your program and
does not change as your program executes. GDB finds it in your
program's symbol table, in the file indicated when you started GDB
(*note Choosing files: File Options.), or by one of the file-management
commands (*note Commands to specify files: Files.).
Occasionally, you may need to refer to symbols that contain unusual
characters, which GDB ordinarily treats as word delimiters. The most
frequent case is in referring to static variables in other source files
(*note Program variables: Variables.). File names are recorded in
object files as debugging symbols, but GDB would ordinarily parse a
typical file name, like `foo.c', as the three words `foo' `.' `c'. To
allow GDB to recognize `foo.c' as a single symbol, enclose it in single
quotes; for example,
p 'foo.c'::x
looks up the value of `x' in the scope of the file `foo.c'.
`info address SYMBOL'
Describe where the data for SYMBOL is stored. For a register
variable, this says which register it is kept in. For a
non-register local variable, this prints the stack-frame offset at
which the variable is always stored.
Note the contrast with `print &SYMBOL', which does not work at all
for a register variable, and for a stack local variable prints the
exact address of the current instantiation of the variable.
`info symbol ADDR'
Print the name of a symbol which is stored at the address ADDR.
If no symbol is stored exactly at ADDR, GDB prints the nearest
symbol and an offset from it:
(gdb) info symbol 0x54320
_initialize_vx + 396 in section .text
This is the opposite of the `info address' command. You can use
it to find out the name of a variable or a function given its
address.
`whatis EXPR'
Print the data type of expression EXPR. EXPR is not actually
evaluated, and any side-effecting operations (such as assignments
or function calls) inside it do not take place. *Note
Expressions: Expressions.
`whatis'
Print the data type of `$', the last value in the value history.
`ptype TYPENAME'
Print a description of data type TYPENAME. TYPENAME may be the
name of a type, or for C code it may have the form `class
CLASS-NAME', `struct STRUCT-TAG', `union UNION-TAG' or `enum
ENUM-TAG'.
`ptype EXPR'
`ptype'
Print a description of the type of expression EXPR. `ptype'
differs from `whatis' by printing a detailed description, instead
of just the name of the type.
For example, for this variable declaration:
struct complex {double real; double imag;} v;
the two commands give this output:
(gdb) whatis v
type = struct complex
(gdb) ptype v
type = struct complex {
double real;
double imag;
}
As with `whatis', using `ptype' without an argument refers to the
type of `$', the last value in the value history.
`info types REGEXP'
`info types'
Print a brief description of all types whose names match REGEXP
(or all types in your program, if you supply no argument). Each
complete typename is matched as though it were a complete line;
thus, `i type value' gives information on all types in your
program whose names include the string `value', but `i type
^value$' gives information only on types whose complete name is
`value'.
This command differs from `ptype' in two ways: first, like
`whatis', it does not print a detailed description; second, it
lists all source files where a type is defined.
`info scope ADDR'
List all the variables local to a particular scope. This command
accepts a location--a function name, a source line, or an address
preceded by a `*', and prints all the variables local to the scope
defined by that location. For example:
(gdb) info scope command_line_handler
Scope for command_line_handler:
Symbol rl is an argument at stack/frame offset 8, length 4.
Symbol linebuffer is in static storage at address 0x150a18, length 4.
Symbol linelength is in static storage at address 0x150a1c, length 4.
Symbol p is a local variable in register $esi, length 4.
Symbol p1 is a local variable in register $ebx, length 4.
Symbol nline is a local variable in register $edx, length 4.
Symbol repeat is a local variable at frame offset -8, length 4.
This command is especially useful for determining what data to
collect during a "trace experiment", see *Note collect: Tracepoint
Actions.
`info source'
Show information about the current source file--that is, the
source file for the function containing the current point of
execution:
* the name of the source file, and the directory containing it,
* the directory it was compiled in,
* its length, in lines,
* which programming language it is written in,
* whether the executable includes debugging information for
that file, and if so, what format the information is in
(e.g., STABS, Dwarf 2, etc.), and
* whether the debugging information includes information about
preprocessor macros.
`info sources'
Print the names of all source files in your program for which
there is debugging information, organized into two lists: files
whose symbols have already been read, and files whose symbols will
be read when needed.
`info functions'
Print the names and data types of all defined functions.
`info functions REGEXP'
Print the names and data types of all defined functions whose
names contain a match for regular expression REGEXP. Thus, `info
fun step' finds all functions whose names include `step'; `info
fun ^step' finds those whose names start with `step'. If a
function name contains characters that conflict with the regular
expression language (eg. `operator*()'), they may be quoted with
a backslash.
`info variables'
Print the names and data types of all variables that are declared
outside of functions (i.e. excluding local variables).
`info variables REGEXP'
Print the names and data types of all variables (except for local
variables) whose names contain a match for regular expression
REGEXP.
`info classes'
`info classes REGEXP'
Display all Objective-C classes in your program, or (with the
REGEXP argument) all those matching a particular regular
expression.
`info selectors'
`info selectors REGEXP'
Display all Objective-C selectors in your program, or (with the
REGEXP argument) all those matching a particular regular
expression.
Some systems allow individual object files that make up your
program to be replaced without stopping and restarting your
program. For example, in VxWorks you can simply recompile a
defective object file and keep on running. If you are running on
one of these systems, you can allow GDB to reload the symbols for
automatically relinked modules:
`set symbol-reloading on'
Replace symbol definitions for the corresponding source file
when an object file with a particular name is seen again.
`set symbol-reloading off'
Do not replace symbol definitions when encountering object
files of the same name more than once. This is the default
state; if you are not running on a system that permits
automatic relinking of modules, you should leave
`symbol-reloading' off, since otherwise GDB may discard
symbols when linking large programs, that may contain several
modules (from different directories or libraries) with the
same name.
`show symbol-reloading'
Show the current `on' or `off' setting.
`set opaque-type-resolution on'
Tell GDB to resolve opaque types. An opaque type is a type
declared as a pointer to a `struct', `class', or `union'--for
example, `struct MyType *'--that is used in one source file
although the full declaration of `struct MyType' is in another
source file. The default is on.
A change in the setting of this subcommand will not take effect
until the next time symbols for a file are loaded.
`set opaque-type-resolution off'
Tell GDB not to resolve opaque types. In this case, the type is
printed as follows:
{}
`show opaque-type-resolution'
Show whether opaque types are resolved or not.
`maint print symbols FILENAME'
`maint print psymbols FILENAME'
`maint print msymbols FILENAME'
Write a dump of debugging symbol data into the file FILENAME.
These commands are used to debug the GDB symbol-reading code. Only
symbols with debugging data are included. If you use `maint print
symbols', GDB includes all the symbols for which it has already
collected full details: that is, FILENAME reflects symbols for
only those files whose symbols GDB has read. You can use the
command `info sources' to find out which files these are. If you
use `maint print psymbols' instead, the dump shows information
about symbols that GDB only knows partially--that is, symbols
defined in files that GDB has skimmed, but not yet read
completely. Finally, `maint print msymbols' dumps just the
minimal symbol information required for each object file from
which GDB has read some symbols. *Note Commands to specify files:
Files, for a discussion of how GDB reads symbols (in the
description of `symbol-file').
`maint info symtabs [ REGEXP ]'
`maint info psymtabs [ REGEXP ]'
List the `struct symtab' or `struct partial_symtab' structures
whose names match REGEXP. If REGEXP is not given, list them all.
The output includes expressions which you can copy into a GDB
debugging this one to examine a particular structure in more
detail. For example:
(gdb) maint info psymtabs dwarf2read
{ objfile /home/gnu/build/gdb/gdb
((struct objfile *) 0x82e69d0)
{ psymtab /home/gnu/src/gdb/dwarf2read.c
((struct partial_symtab *) 0x8474b10)
readin no
fullname (null)
text addresses 0x814d3c8 -- 0x8158074
globals (* (struct partial_symbol **) 0x8507a08 @ 9)
statics (* (struct partial_symbol **) 0x40e95b78 @ 2882)
dependencies (none)
}
}
(gdb) maint info symtabs
(gdb)
We see that there is one partial symbol table whose filename
contains the string `dwarf2read', belonging to the `gdb'
executable; and we see that GDB has not read in any symtabs yet at
all. If we set a breakpoint on a function, that will cause GDB to
read the symtab for the compilation unit containing that function:
(gdb) break dwarf2_psymtab_to_symtab
Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
line 1574.
(gdb) maint info symtabs
{ objfile /home/gnu/build/gdb/gdb
((struct objfile *) 0x82e69d0)
{ symtab /home/gnu/src/gdb/dwarf2read.c
((struct symtab *) 0x86c1f38)
dirname (null)
fullname (null)
blockvector ((struct blockvector *) 0x86c1bd0) (primary)
debugformat DWARF 2
}
}
(gdb)
File: gdb.info, Node: Altering, Next: GDB Files, Prev: Symbols, Up: Top
14 Altering Execution
*********************
Once you think you have found an error in your program, you might want
to find out for certain whether correcting the apparent error would
lead to correct results in the rest of the run. You can find the
answer by experiment, using the GDB features for altering execution of
the program.
For example, you can store new values into variables or memory
locations, give your program a signal, restart it at a different
address, or even return prematurely from a function.
* Menu:
* Assignment:: Assignment to variables
* Jumping:: Continuing at a different address
* Signaling:: Giving your program a signal
* Returning:: Returning from a function
* Calling:: Calling your program's functions
* Patching:: Patching your program
File: gdb.info, Node: Assignment, Next: Jumping, Up: Altering
14.1 Assignment to variables
============================
To alter the value of a variable, evaluate an assignment expression.
*Note Expressions: Expressions. For example,
print x=4
stores the value 4 into the variable `x', and then prints the value of
the assignment expression (which is 4). *Note Using GDB with Different
Languages: Languages, for more information on operators in supported
languages.
If you are not interested in seeing the value of the assignment, use
the `set' command instead of the `print' command. `set' is really the
same as `print' except that the expression's value is not printed and
is not put in the value history (*note Value history: Value History.).
The expression is evaluated only for its effects.
If the beginning of the argument string of the `set' command appears
identical to a `set' subcommand, use the `set variable' command instead
of just `set'. This command is identical to `set' except for its lack
of subcommands. For example, if your program has a variable `width',
you get an error if you try to set a new value with just `set
width=13', because GDB has the command `set width':
(gdb) whatis width
type = double
(gdb) p width
$4 = 13
(gdb) set width=47
Invalid syntax in expression.
The invalid expression, of course, is `=47'. In order to actually set
the program's variable `width', use
(gdb) set var width=47
Because the `set' command has many subcommands that can conflict
with the names of program variables, it is a good idea to use the `set
variable' command instead of just `set'. For example, if your program
has a variable `g', you run into problems if you try to set a new value
with just `set g=4', because GDB has the command `set gnutarget',
abbreviated `set g':
(gdb) whatis g
type = double
(gdb) p g
$1 = 1
(gdb) set g=4
(gdb) p g
$2 = 1
(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/smith/cc_progs/a.out
"/home/smith/cc_progs/a.out": can't open to read symbols:
Invalid bfd target.
(gdb) show g
The current BFD target is "=4".
The program variable `g' did not change, and you silently set the
`gnutarget' to an invalid value. In order to set the variable `g', use
(gdb) set var g=4
GDB allows more implicit conversions in assignments than C; you can
freely store an integer value into a pointer variable or vice versa,
and you can convert any structure to any other structure that is the
same length or shorter.
To store values into arbitrary places in memory, use the `{...}'
construct to generate a value of specified type at a specified address
(*note Expressions: Expressions.). For example, `{int}0x83040' refers
to memory location `0x83040' as an integer (which implies a certain size
and representation in memory), and
set {int}0x83040 = 4
stores the value 4 into that memory location.
File: gdb.info, Node: Jumping, Next: Signaling, Prev: Assignment, Up: Altering
14.2 Continuing at a different address
======================================
Ordinarily, when you continue your program, you do so at the place where
it stopped, with the `continue' command. You can instead continue at
an address of your own choosing, with the following commands:
`jump LINESPEC'
Resume execution at line LINESPEC. Execution stops again
immediately if there is a breakpoint there. *Note Printing source
lines: List, for a description of the different forms of LINESPEC.
It is common practice to use the `tbreak' command in conjunction
with `jump'. *Note Setting breakpoints: Set Breaks.
The `jump' command does not change the current stack frame, or the
stack pointer, or the contents of any memory location or any
register other than the program counter. If line LINESPEC is in a
different function from the one currently executing, the results
may be bizarre if the two functions expect different patterns of
arguments or of local variables. For this reason, the `jump'
command requests confirmation if the specified line is not in the
function currently executing. However, even bizarre results are
predictable if you are well acquainted with the machine-language
code of your program.
`jump *ADDRESS'
Resume execution at the instruction at address ADDRESS.
On many systems, you can get much the same effect as the `jump'
command by storing a new value into the register `$pc'. The difference
is that this does not start your program running; it only changes the
address of where it _will_ run when you continue. For example,
set $pc = 0x485
makes the next `continue' command or stepping command execute at
address `0x485', rather than at the address where your program stopped.
*Note Continuing and stepping: Continuing and Stepping.
The most common occasion to use the `jump' command is to back
up--perhaps with more breakpoints set--over a portion of a program that
has already executed, in order to examine its execution in more detail.
File: gdb.info, Node: Signaling, Next: Returning, Prev: Jumping, Up: Altering
14.3 Giving your program a signal
=================================
`signal SIGNAL'
Resume execution where your program stopped, but immediately give
it the signal SIGNAL. SIGNAL can be the name or the number of a
signal. For example, on many systems `signal 2' and `signal
SIGINT' are both ways of sending an interrupt signal.
Alternatively, if SIGNAL is zero, continue execution without
giving a signal. This is useful when your program stopped on
account of a signal and would ordinary see the signal when resumed
with the `continue' command; `signal 0' causes it to resume
without a signal.
`signal' does not repeat when you press a second time after
executing the command.
Invoking the `signal' command is not the same as invoking the `kill'
utility from the shell. Sending a signal with `kill' causes GDB to
decide what to do with the signal depending on the signal handling
tables (*note Signals::). The `signal' command passes the signal
directly to your program.
File: gdb.info, Node: Returning, Next: Calling, Prev: Signaling, Up: Altering
14.4 Returning from a function
==============================
`return'
`return EXPRESSION'
You can cancel execution of a function call with the `return'
command. If you give an EXPRESSION argument, its value is used as
the function's return value.
When you use `return', GDB discards the selected stack frame (and
all frames within it). You can think of this as making the discarded
frame return prematurely. If you wish to specify a value to be
returned, give that value as the argument to `return'.
This pops the selected stack frame (*note Selecting a frame:
Selection.), and any other frames inside of it, leaving its caller as
the innermost remaining frame. That frame becomes selected. The
specified value is stored in the registers used for returning values of
functions.
The `return' command does not resume execution; it leaves the
program stopped in the state that would exist if the function had just
returned. In contrast, the `finish' command (*note Continuing and
stepping: Continuing and Stepping.) resumes execution until the
selected stack frame returns naturally.
File: gdb.info, Node: Calling, Next: Patching, Prev: Returning, Up: Altering
14.5 Calling program functions
==============================
`call EXPR'
Evaluate the expression EXPR without displaying `void' returned
values.
You can use this variant of the `print' command if you want to
execute a function from your program, but without cluttering the output
with `void' returned values. If the result is not void, it is printed
and saved in the value history.
File: gdb.info, Node: Patching, Prev: Calling, Up: Altering
14.6 Patching programs
======================
By default, GDB opens the file containing your program's executable
code (or the corefile) read-only. This prevents accidental alterations
to machine code; but it also prevents you from intentionally patching
your program's binary.
If you'd like to be able to patch the binary, you can specify that
explicitly with the `set write' command. For example, you might want
to turn on internal debugging flags, or even to make emergency repairs.
`set write on'
`set write off'
If you specify `set write on', GDB opens executable and core files
for both reading and writing; if you specify `set write off' (the
default), GDB opens them read-only.
If you have already loaded a file, you must load it again (using
the `exec-file' or `core-file' command) after changing `set
write', for your new setting to take effect.
`show write'
Display whether executable files and core files are opened for
writing as well as reading.
File: gdb.info, Node: GDB Files, Next: Targets, Prev: Altering, Up: Top
15 GDB Files
************
GDB needs to know the file name of the program to be debugged, both in
order to read its symbol table and in order to start your program. To
debug a core dump of a previous run, you must also tell GDB the name of
the core dump file.
* Menu:
* Files:: Commands to specify files
* Separate Debug Files:: Debugging information in separate files
* Symbol Errors:: Errors reading symbol files
File: gdb.info, Node: Files, Next: Separate Debug Files, Up: GDB Files
15.1 Commands to specify files
==============================
You may want to specify executable and core dump file names. The usual
way to do this is at start-up time, using the arguments to GDB's
start-up commands (*note Getting In and Out of GDB: Invocation.).
Occasionally it is necessary to change to a different file during a
GDB session. Or you may run GDB and forget to specify a file you want
to use. In these situations the GDB commands to specify new files are
useful.
`file FILENAME'
Use FILENAME as the program to be debugged. It is read for its
symbols and for the contents of pure memory. It is also the
program executed when you use the `run' command. If you do not
specify a directory and the file is not found in the GDB working
directory, GDB uses the environment variable `PATH' as a list of
directories to search, just as the shell does when looking for a
program to run. You can change the value of this variable, for
both GDB and your program, using the `path' command.
On systems with memory-mapped files, an auxiliary file named
`FILENAME.syms' may hold symbol table information for FILENAME.
If so, GDB maps in the symbol table from `FILENAME.syms', starting
up more quickly. See the descriptions of the file options
`-mapped' and `-readnow' (available on the command line, and with
the commands `file', `symbol-file', or `add-symbol-file',
described below), for more information.
`file'
`file' with no argument makes GDB discard any information it has
on both executable file and the symbol table.
`exec-file [ FILENAME ]'
Specify that the program to be run (but not the symbol table) is
found in FILENAME. GDB searches the environment variable `PATH'
if necessary to locate your program. Omitting FILENAME means to
discard information on the executable file.
`symbol-file [ FILENAME ]'
Read symbol table information from file FILENAME. `PATH' is
searched when necessary. Use the `file' command to get both symbol
table and program to run from the same file.
`symbol-file' with no argument clears out GDB information on your
program's symbol table.
The `symbol-file' command causes GDB to forget the contents of its
convenience variables, the value history, and all breakpoints and
auto-display expressions. This is because they may contain
pointers to the internal data recording symbols and data types,
which are part of the old symbol table data being discarded inside
GDB.
`symbol-file' does not repeat if you press again after
executing it once.
When GDB is configured for a particular environment, it
understands debugging information in whatever format is the
standard generated for that environment; you may use either a GNU
compiler, or other compilers that adhere to the local conventions.
Best results are usually obtained from GNU compilers; for example,
using `gcc' you can generate debugging information for optimized
code.
For most kinds of object files, with the exception of old SVR3
systems using COFF, the `symbol-file' command does not normally
read the symbol table in full right away. Instead, it scans the
symbol table quickly to find which source files and which symbols
are present. The details are read later, one source file at a
time, as they are needed.
The purpose of this two-stage reading strategy is to make GDB
start up faster. For the most part, it is invisible except for
occasional pauses while the symbol table details for a particular
source file are being read. (The `set verbose' command can turn
these pauses into messages if desired. *Note Optional warnings
and messages: Messages/Warnings.)
We have not implemented the two-stage strategy for COFF yet. When
the symbol table is stored in COFF format, `symbol-file' reads the
symbol table data in full right away. Note that "stabs-in-COFF"
still does the two-stage strategy, since the debug info is actually
in stabs format.
`symbol-file FILENAME [ -readnow ] [ -mapped ]'
`file FILENAME [ -readnow ] [ -mapped ]'
You can override the GDB two-stage strategy for reading symbol
tables by using the `-readnow' option with any of the commands that
load symbol table information, if you want to be sure GDB has the
entire symbol table available.
If memory-mapped files are available on your system through the
`mmap' system call, you can use another option, `-mapped', to
cause GDB to write the symbols for your program into a reusable
file. Future GDB debugging sessions map in symbol information
from this auxiliary symbol file (if the program has not changed),
rather than spending time reading the symbol table from the
executable program. Using the `-mapped' option has the same
effect as starting GDB with the `-mapped' command-line option.
You can use both options together, to make sure the auxiliary
symbol file has all the symbol information for your program.
The auxiliary symbol file for a program called MYPROG is called
`MYPROG.syms'. Once this file exists (so long as it is newer than
the corresponding executable), GDB always attempts to use it when
you debug MYPROG; no special options or commands are needed.
The `.syms' file is specific to the host machine where you run
GDB. It holds an exact image of the internal GDB symbol table.
It cannot be shared across multiple host platforms.
`core-file [ FILENAME ]'
`core'
Specify the whereabouts of a core dump file to be used as the
"contents of memory". Traditionally, core files contain only some
parts of the address space of the process that generated them; GDB
can access the executable file itself for other parts.
`core-file' with no argument specifies that no core file is to be
used.
Note that the core file is ignored when your program is actually
running under GDB. So, if you have been running your program and
you wish to debug a core file instead, you must kill the
subprocess in which the program is running. To do this, use the
`kill' command (*note Killing the child process: Kill Process.).
`add-symbol-file FILENAME ADDRESS'
`add-symbol-file FILENAME ADDRESS [ -readnow ] [ -mapped ]'
`add-symbol-file FILENAME -sSECTION ADDRESS ...'
The `add-symbol-file' command reads additional symbol table
information from the file FILENAME. You would use this command
when FILENAME has been dynamically loaded (by some other means)
into the program that is running. ADDRESS should be the memory
address at which the file has been loaded; GDB cannot figure this
out for itself. You can additionally specify an arbitrary number
of `-sSECTION ADDRESS' pairs, to give an explicit section name and
base address for that section. You can specify any ADDRESS as an
expression.
The symbol table of the file FILENAME is added to the symbol table
originally read with the `symbol-file' command. You can use the
`add-symbol-file' command any number of times; the new symbol data
thus read keeps adding to the old. To discard all old symbol data
instead, use the `symbol-file' command without any arguments.
Although FILENAME is typically a shared library file, an
executable file, or some other object file which has been fully
relocated for loading into a process, you can also load symbolic
information from relocatable `.o' files, as long as:
* the file's symbolic information refers only to linker symbols
defined in that file, not to symbols defined by other object
files,
* every section the file's symbolic information refers to has
actually been loaded into the inferior, as it appears in the
file, and
* you can determine the address at which every section was
loaded, and provide these to the `add-symbol-file' command.
Some embedded operating systems, like Sun Chorus and VxWorks, can
load relocatable files into an already running program; such
systems typically make the requirements above easy to meet.
However, it's important to recognize that many native systems use
complex link procedures (`.linkonce' section factoring and C++
constructor table assembly, for example) that make the
requirements difficult to meet. In general, one cannot assume
that using `add-symbol-file' to read a relocatable object file's
symbolic information will have the same effect as linking the
relocatable object file into the program in the normal way.
`add-symbol-file' does not repeat if you press after using
it.
You can use the `-mapped' and `-readnow' options just as with the
`symbol-file' command, to change how GDB manages the symbol table
information for FILENAME.
`add-shared-symbol-file'
The `add-shared-symbol-file' command can be used only under
Harris' CXUX operating system for the Motorola 88k. GDB
automatically looks for shared libraries, however if GDB does not
find yours, you can run `add-shared-symbol-file'. It takes no
arguments.
`section'
The `section' command changes the base address of section SECTION
of the exec file to ADDR. This can be used if the exec file does
not contain section addresses, (such as in the a.out format), or
when the addresses specified in the file itself are wrong. Each
section must be changed separately. The `info files' command,
described below, lists all the sections and their addresses.
`info files'
`info target'
`info files' and `info target' are synonymous; both print the
current target (*note Specifying a Debugging Target: Targets.),
including the names of the executable and core dump files
currently in use by GDB, and the files from which symbols were
loaded. The command `help target' lists all possible targets
rather than current ones.
`maint info sections'
Another command that can give you extra information about program
sections is `maint info sections'. In addition to the section
information displayed by `info files', this command displays the
flags and file offset of each section in the executable and core
dump files. In addition, `maint info sections' provides the
following command options (which may be arbitrarily combined):
`ALLOBJ'
Display sections for all loaded object files, including
shared libraries.
`SECTIONS'
Display info only for named SECTIONS.
`SECTION-FLAGS'
Display info only for sections for which SECTION-FLAGS are
true. The section flags that GDB currently knows about are:
`ALLOC'
Section will have space allocated in the process when
loaded. Set for all sections except those containing
debug information.
`LOAD'
Section will be loaded from the file into the child
process memory. Set for pre-initialized code and data,
clear for `.bss' sections.
`RELOC'
Section needs to be relocated before loading.
`READONLY'
Section cannot be modified by the child process.
`CODE'
Section contains executable code only.
`DATA'
Section contains data only (no executable code).
`ROM'
Section will reside in ROM.
`CONSTRUCTOR'
Section contains data for constructor/destructor lists.
`HAS_CONTENTS'
Section is not empty.
`NEVER_LOAD'
An instruction to the linker to not output the section.
`COFF_SHARED_LIBRARY'
A notification to the linker that the section contains
COFF shared library information.
`IS_COMMON'
Section contains common symbols.
`set trust-readonly-sections on'
Tell GDB that readonly sections in your object file really are
read-only (i.e. that their contents will not change). In that
case, GDB can fetch values from these sections out of the object
file, rather than from the target program. For some targets
(notably embedded ones), this can be a significant enhancement to
debugging performance.
The default is off.
`set trust-readonly-sections off'
Tell GDB not to trust readonly sections. This means that the
contents of the section might change while the program is running,
and must therefore be fetched from the target when needed.
All file-specifying commands allow both absolute and relative file
names as arguments. GDB always converts the file name to an absolute
file name and remembers it that way.
GDB supports HP-UX, SunOS, SVr4, Irix 5, and IBM RS/6000 shared
libraries.
GDB automatically loads symbol definitions from shared libraries
when you use the `run' command, or when you examine a core file.
(Before you issue the `run' command, GDB does not understand references
to a function in a shared library, however--unless you are debugging a
core file).
On HP-UX, if the program loads a library explicitly, GDB
automatically loads the symbols at the time of the `shl_load' call.
There are times, however, when you may wish to not automatically load
symbol definitions from shared libraries, such as when they are
particularly large or there are many of them.
To control the automatic loading of shared library symbols, use the
commands:
`set auto-solib-add MODE'
If MODE is `on', symbols from all shared object libraries will be
loaded automatically when the inferior begins execution, you
attach to an independently started inferior, or when the dynamic
linker informs GDB that a new library has been loaded. If MODE is
`off', symbols must be loaded manually, using the `sharedlibrary'
command. The default value is `on'.
`show auto-solib-add'
Display the current autoloading mode.
To explicitly load shared library symbols, use the `sharedlibrary'
command:
`info share'
`info sharedlibrary'
Print the names of the shared libraries which are currently loaded.
`sharedlibrary REGEX'
`share REGEX'
Load shared object library symbols for files matching a Unix
regular expression. As with files loaded automatically, it only
loads shared libraries required by your program for a core file or
after typing `run'. If REGEX is omitted all shared libraries
required by your program are loaded.
On some systems, such as HP-UX systems, GDB supports autoloading
shared library symbols until a limiting threshold size is reached.
This provides the benefit of allowing autoloading to remain on by
default, but avoids autoloading excessively large shared libraries, up
to a threshold that is initially set, but which you can modify if you
wish.
Beyond that threshold, symbols from shared libraries must be
explicitly loaded. To load these symbols, use the command
`sharedlibrary FILENAME'. The base address of the shared library is
determined automatically by GDB and need not be specified.
To display or set the threshold, use the commands:
`set auto-solib-limit THRESHOLD'
Set the autoloading size threshold, in an integral number of
megabytes. If THRESHOLD is nonzero and shared library autoloading
is enabled, symbols from all shared object libraries will be
loaded until the total size of the loaded shared library symbols
exceeds this threshold. Otherwise, symbols must be loaded
manually, using the `sharedlibrary' command. The default
threshold is 100 (i.e. 100 Mb).
`show auto-solib-limit'
Display the current autoloading size threshold, in megabytes.
Shared libraries are also supported in many cross or remote debugging
configurations. A copy of the target's libraries need to be present on
the host system; they need to be the same as the target libraries,
although the copies on the target can be stripped as long as the copies
on the host are not.
You need to tell GDB where the target libraries are, so that it can
load the correct copies--otherwise, it may try to load the host's
libraries. GDB has two variables to specify the search directories for
target libraries.
`set solib-absolute-prefix PATH'
If this variable is set, PATH will be used as a prefix for any
absolute shared library paths; many runtime loaders store the
absolute paths to the shared library in the target program's
memory. If you use `solib-absolute-prefix' to find shared
libraries, they need to be laid out in the same way that they are
on the target, with e.g. a `/usr/lib' hierarchy under PATH.
You can set the default value of `solib-absolute-prefix' by using
the configure-time `--with-sysroot' option.
`show solib-absolute-prefix'
Display the current shared library prefix.
`set solib-search-path PATH'
If this variable is set, PATH is a colon-separated list of
directories to search for shared libraries. `solib-search-path'
is used after `solib-absolute-prefix' fails to locate the library,
or if the path to the library is relative instead of absolute. If
you want to use `solib-search-path' instead of
`solib-absolute-prefix', be sure to set `solib-absolute-prefix' to
a nonexistant directory to prevent GDB from finding your host's
libraries.
`show solib-search-path'
Display the current shared library search path.
File: gdb.info, Node: Separate Debug Files, Next: Symbol Errors, Prev: Files, Up: GDB Files
15.2 Debugging Information in Separate Files
============================================
GDB allows you to put a program's debugging information in a file
separate from the executable itself, in a way that allows GDB to find
and load the debugging information automatically. Since debugging
information can be very large -- sometimes larger than the executable
code itself -- some systems distribute debugging information for their
executables in separate files, which users can install only when they
need to debug a problem.
If an executable's debugging information has been extracted to a
separate file, the executable should contain a "debug link" giving the
name of the debugging information file (with no directory components),
and a checksum of its contents. (The exact form of a debug link is
described below.) If the full name of the directory containing the
executable is EXECDIR, and the executable has a debug link that
specifies the name DEBUGFILE, then GDB will automatically search for
the debugging information file in three places:
* the directory containing the executable file (that is, it will look
for a file named `EXECDIR/DEBUGFILE',
* a subdirectory of that directory named `.debug' (that is, the file
`EXECDIR/.debug/DEBUGFILE', and
* a subdirectory of the global debug file directory that includes the
executable's full path, and the name from the link (that is, the
file `GLOBALDEBUGDIR/EXECDIR/DEBUGFILE', where GLOBALDEBUGDIR is
the global debug file directory, and EXECDIR has been turned into
a relative path).
GDB checks under each of these names for a debugging information
file whose checksum matches that given in the link, and reads the
debugging information from the first one it finds.
So, for example, if you ask GDB to debug `/usr/bin/ls', which has a
link containing the name `ls.debug', and the global debug directory is
`/usr/lib/debug', then GDB will look for debug information in
`/usr/bin/ls.debug', `/usr/bin/.debug/ls.debug', and
`/usr/lib/debug/usr/bin/ls.debug'.
You can set the global debugging info directory's name, and view the
name GDB is currently using.
`set debug-file-directory DIRECTORY'
Set the directory which GDB searches for separate debugging
information files to DIRECTORY.
`show debug-file-directory'
Show the directory GDB searches for separate debugging information
files.
A debug link is a special section of the executable file named
`.gnu_debuglink'. The section must contain:
* A filename, with any leading directory components removed,
followed by a zero byte,
* zero to three bytes of padding, as needed to reach the next
four-byte boundary within the section, and
* a four-byte CRC checksum, stored in the same endianness used for
the executable file itself. The checksum is computed on the
debugging information file's full contents by the function given
below, passing zero as the CRC argument.
Any executable file format can carry a debug link, as long as it can
contain a section named `.gnu_debuglink' with the contents described
above.
The debugging information file itself should be an ordinary
executable, containing a full set of linker symbols, sections, and
debugging information. The sections of the debugging information file
should have the same names, addresses and sizes as the original file,
but they need not contain any data -- much like a `.bss' section in an
ordinary executable.
As of December 2002, there is no standard GNU utility to produce
separated executable / debugging information file pairs. Ulrich
Drepper's `elfutils' package, starting with version 0.53, contains a
version of the `strip' command such that the command `strip foo -f
foo.debug' removes the debugging information from the executable file
`foo', places it in the file `foo.debug', and leaves behind a debug
link in `foo'.
Since there are many different ways to compute CRC's (different
polynomials, reversals, byte ordering, etc.), the simplest way to
describe the CRC used in `.gnu_debuglink' sections is to give the
complete code for a function that computes it:
unsigned long
gnu_debuglink_crc32 (unsigned long crc,
unsigned char *buf, size_t len)
{
static const unsigned long crc32_table[256] =
{
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
0x2d02ef8d
};
unsigned char *end;
crc = ~crc & 0xffffffff;
for (end = buf + len; buf < end; ++buf)
crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
return ~crc & 0xffffffff;
}
File: gdb.info, Node: Symbol Errors, Prev: Separate Debug Files, Up: GDB Files
15.3 Errors reading symbol files
================================
While reading a symbol file, GDB occasionally encounters problems, such
as symbol types it does not recognize, or known bugs in compiler
output. By default, GDB does not notify you of such problems, since
they are relatively common and primarily of interest to people
debugging compilers. If you are interested in seeing information about
ill-constructed symbol tables, you can either ask GDB to print only one
message about each such type of problem, no matter how many times the
problem occurs; or you can ask GDB to print more messages, to see how
many times the problems occur, with the `set complaints' command (*note
Optional warnings and messages: Messages/Warnings.).
The messages currently printed, and their meanings, include:
`inner block not inside outer block in SYMBOL'
The symbol information shows where symbol scopes begin and end
(such as at the start of a function or a block of statements).
This error indicates that an inner scope block is not fully
contained in its outer scope blocks.
GDB circumvents the problem by treating the inner block as if it
had the same scope as the outer block. In the error message,
SYMBOL may be shown as "`(don't know)'" if the outer block is not a
function.
`block at ADDRESS out of order'
The symbol information for symbol scope blocks should occur in
order of increasing addresses. This error indicates that it does
not do so.
GDB does not circumvent this problem, and has trouble locating
symbols in the source file whose symbols it is reading. (You can
often determine what source file is affected by specifying `set
verbose on'. *Note Optional warnings and messages:
Messages/Warnings.)
`bad block start address patched'
The symbol information for a symbol scope block has a start address
smaller than the address of the preceding source line. This is
known to occur in the SunOS 4.1.1 (and earlier) C compiler.
GDB circumvents the problem by treating the symbol scope block as
starting on the previous source line.
`bad string table offset in symbol N'
Symbol number N contains a pointer into the string table which is
larger than the size of the string table.
GDB circumvents the problem by considering the symbol to have the
name `foo', which may cause other problems if many symbols end up
with this name.
`unknown symbol type `0xNN''
The symbol information contains new data types that GDB does not
yet know how to read. `0xNN' is the symbol type of the
uncomprehended information, in hexadecimal.
GDB circumvents the error by ignoring this symbol information.
This usually allows you to debug your program, though certain
symbols are not accessible. If you encounter such a problem and
feel like debugging it, you can debug `gdb' with itself, breakpoint
on `complain', then go up to the function `read_dbx_symtab' and
examine `*bufp' to see the symbol.
`stub type has NULL name'
GDB could not find the full definition for a struct or class.
`const/volatile indicator missing (ok if using g++ v1.x), got...'
The symbol information for a C++ member function is missing some
information that recent versions of the compiler should have
output for it.
`info mismatch between compiler and debugger'
GDB could not parse a type specification output by the compiler.
File: gdb.info, Node: Targets, Next: Remote Debugging, Prev: GDB Files, Up: Top
16 Specifying a Debugging Target
********************************
A "target" is the execution environment occupied by your program.
Often, GDB runs in the same host environment as your program; in
that case, the debugging target is specified as a side effect when you
use the `file' or `core' commands. When you need more flexibility--for
example, running GDB on a physically separate host, or controlling a
standalone system over a serial port or a realtime system over a TCP/IP
connection--you can use the `target' command to specify one of the
target types configured for GDB (*note Commands for managing targets:
Target Commands.).
* Menu:
* Active Targets:: Active targets
* Target Commands:: Commands for managing targets
* Byte Order:: Choosing target byte order
* Remote:: Remote debugging
* KOD:: Kernel Object Display
File: gdb.info, Node: Active Targets, Next: Target Commands, Up: Targets
16.1 Active targets
===================
There are three classes of targets: processes, core files, and
executable files. GDB can work concurrently on up to three active
targets, one in each class. This allows you to (for example) start a
process and inspect its activity without abandoning your work on a core
file.
For example, if you execute `gdb a.out', then the executable file
`a.out' is the only active target. If you designate a core file as
well--presumably from a prior run that crashed and coredumped--then GDB
has two active targets and uses them in tandem, looking first in the
corefile target, then in the executable file, to satisfy requests for
memory addresses. (Typically, these two classes of target are
complementary, since core files contain only a program's read-write
memory--variables and so on--plus machine status, while executable
files contain only the program text and initialized data.)
When you type `run', your executable file becomes an active process
target as well. When a process target is active, all GDB commands
requesting memory addresses refer to that target; addresses in an
active core file or executable file target are obscured while the
process target is active.
Use the `core-file' and `exec-file' commands to select a new core
file or executable target (*note Commands to specify files: Files.).
To specify as a target a process that is already running, use the
`attach' command (*note Debugging an already-running process: Attach.).
File: gdb.info, Node: Target Commands, Next: Byte Order, Prev: Active Targets, Up: Targets
16.2 Commands for managing targets
==================================
`target TYPE PARAMETERS'
Connects the GDB host environment to a target machine or process.
A target is typically a protocol for talking to debugging
facilities. You use the argument TYPE to specify the type or
protocol of the target machine.
Further PARAMETERS are interpreted by the target protocol, but
typically include things like device names or host names to connect
with, process numbers, and baud rates.
The `target' command does not repeat if you press again
after executing the command.
`help target'
Displays the names of all targets available. To display targets
currently selected, use either `info target' or `info files'
(*note Commands to specify files: Files.).
`help target NAME'
Describe a particular target, including any parameters necessary to
select it.
`set gnutarget ARGS'
GDB uses its own library BFD to read your files. GDB knows
whether it is reading an "executable", a "core", or a ".o" file;
however, you can specify the file format with the `set gnutarget'
command. Unlike most `target' commands, with `gnutarget' the
`target' refers to a program, not a machine.
_Warning:_ To specify a file format with `set gnutarget', you
must know the actual BFD name.
*Note Commands to specify files: Files.
`show gnutarget'
Use the `show gnutarget' command to display what file format
`gnutarget' is set to read. If you have not set `gnutarget', GDB
will determine the file format for each file automatically, and
`show gnutarget' displays `The current BDF target is "auto"'.
Here are some common targets (available, or not, depending on the GDB
configuration):
`target exec PROGRAM'
An executable file. `target exec PROGRAM' is the same as
`exec-file PROGRAM'.
`target core FILENAME'
A core dump file. `target core FILENAME' is the same as
`core-file FILENAME'.
`target remote DEV'
Remote serial target in GDB-specific protocol. The argument DEV
specifies what serial device to use for the connection (e.g.
`/dev/ttya'). *Note Remote debugging: Remote. `target remote'
supports the `load' command. This is only useful if you have some
other way of getting the stub to the target system, and you can put
it somewhere in memory where it won't get clobbered by the
download.
`target sim'
Builtin CPU simulator. GDB includes simulators for most
architectures. In general,
target sim
load
run
works; however, you cannot assume that a specific memory map,
device drivers, or even basic I/O is available, although some
simulators do provide these. For info about any
processor-specific simulator details, see the appropriate section
in *Note Embedded Processors: Embedded Processors.
Some configurations may include these targets as well:
`target nrom DEV'
NetROM ROM emulator. This target only supports downloading.
Different targets are available on different configurations of GDB;
your configuration may have more or fewer targets.
Many remote targets require you to download the executable's code
once you've successfully established a connection.
`load FILENAME'
Depending on what remote debugging facilities are configured into
GDB, the `load' command may be available. Where it exists, it is
meant to make FILENAME (an executable) available for debugging on
the remote system--by downloading, or dynamic linking, for example.
`load' also records the FILENAME symbol table in GDB, like the
`add-symbol-file' command.
If your GDB does not have a `load' command, attempting to execute
it gets the error message "`You can't do that when your target is
...'"
The file is loaded at whatever address is specified in the
executable. For some object file formats, you can specify the
load address when you link the program; for other formats, like
a.out, the object file format specifies a fixed address.
`load' does not repeat if you press again after using it.
File: gdb.info, Node: Byte Order, Next: Remote, Prev: Target Commands, Up: Targets
16.3 Choosing target byte order
===============================
Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
offer the ability to run either big-endian or little-endian byte
orders. Usually the executable or symbol will include a bit to
designate the endian-ness, and you will not need to worry about which
to use. However, you may still find it useful to adjust GDB's idea of
processor endian-ness manually.
`set endian big'
Instruct GDB to assume the target is big-endian.
`set endian little'
Instruct GDB to assume the target is little-endian.
`set endian auto'
Instruct GDB to use the byte order associated with the executable.
`show endian'
Display GDB's current idea of the target byte order.
Note that these commands merely adjust interpretation of symbolic
data on the host, and that they have absolutely no effect on the target
system.
File: gdb.info, Node: Remote, Next: KOD, Prev: Byte Order, Up: Targets
16.4 Remote debugging
=====================
If you are trying to debug a program running on a machine that cannot
run GDB in the usual way, it is often useful to use remote debugging.
For example, you might use remote debugging on an operating system
kernel, or on a small system which does not have a general purpose
operating system powerful enough to run a full-featured debugger.
Some configurations of GDB have special serial or TCP/IP interfaces
to make this work with particular debugging targets. In addition, GDB
comes with a generic serial protocol (specific to GDB, but not specific
to any particular target system) which you can use if you write the
remote stubs--the code that runs on the remote system to communicate
with GDB.
Other remote targets may be available in your configuration of GDB;
use `help target' to list them.
File: gdb.info, Node: KOD, Prev: Remote, Up: Targets
16.5 Kernel Object Display
==========================
Some targets support kernel object display. Using this facility, GDB
communicates specially with the underlying operating system and can
display information about operating system-level objects such as
mutexes and other synchronization objects. Exactly which objects can be
displayed is determined on a per-OS basis.
Use the `set os' command to set the operating system. This tells
GDB which kernel object display module to initialize:
(gdb) set os cisco
The associated command `show os' displays the operating system set
with the `set os' command; if no operating system has been set, `show
os' will display an empty string `""'.
If `set os' succeeds, GDB will display some information about the
operating system, and will create a new `info' command which can be
used to query the target. The `info' command is named after the
operating system:
(gdb) info cisco
List of Cisco Kernel Objects
Object Description
any Any and all objects
Further subcommands can be used to query about particular objects
known by the kernel.
There is currently no way to determine whether a given operating
system is supported other than to try setting it with `set os NAME',
where NAME is the name of the operating system you want to try.
File: gdb.info, Node: Remote Debugging, Next: Configurations, Prev: Targets, Up: Top
17 Debugging remote programs
****************************
* Menu:
* Connecting:: Connecting to a remote target
* Server:: Using the gdbserver program
* NetWare:: Using the gdbserve.nlm program
* Remote configuration:: Remote configuration
* remote stub:: Implementing a remote stub
File: gdb.info, Node: Connecting, Next: Server, Up: Remote Debugging
17.1 Connecting to a remote target
==================================
On the GDB host machine, you will need an unstripped copy of your
program, since GDB needs symobl and debugging information. Start up
GDB as usual, using the name of the local copy of your program as the
first argument.
If you're using a serial line, you may want to give GDB the `--baud'
option, or use the `set remotebaud' command before the `target' command.
After that, use `target remote' to establish communications with the
target machine. Its argument specifies how to communicate--either via
a devicename attached to a direct serial line, or a TCP or UDP port
(possibly to a terminal server which in turn has a serial line to the
target). For example, to use a serial line connected to the device
named `/dev/ttyb':
target remote /dev/ttyb
To use a TCP connection, use an argument of the form `HOST:PORT' or
`tcp:HOST:PORT'. For example, to connect to port 2828 on a terminal
server named `manyfarms':
target remote manyfarms:2828
If your remote target is actually running on the same machine as
your debugger session (e.g. a simulator of your target running on the
same host), you can omit the hostname. For example, to connect to port
1234 on your local machine:
target remote :1234
Note that the colon is still required here.
To use a UDP connection, use an argument of the form
`udp:HOST:PORT'. For example, to connect to UDP port 2828 on a
terminal server named `manyfarms':
target remote udp:manyfarms:2828
When using a UDP connection for remote debugging, you should keep in
mind that the `U' stands for "Unreliable". UDP can silently drop
packets on busy or unreliable networks, which will cause havoc with
your debugging session.
Now you can use all the usual commands to examine and change data
and to step and continue the remote program.
Whenever GDB is waiting for the remote program, if you type the
interrupt character (often ), GDB attempts to stop the program.
This may or may not succeed, depending in part on the hardware and the
serial drivers the remote system uses. If you type the interrupt
character once again, GDB displays this prompt:
Interrupted while waiting for the program.
Give up (and stop debugging it)? (y or n)
If you type `y', GDB abandons the remote debugging session. (If you
decide you want to try again later, you can use `target remote' again
to connect once more.) If you type `n', GDB goes back to waiting.
`detach'
When you have finished debugging the remote program, you can use
the `detach' command to release it from GDB control. Detaching
from the target normally resumes its execution, but the results
will depend on your particular remote stub. After the `detach'
command, GDB is free to connect to another target.
`disconnect'
The `disconnect' command behaves like `detach', except that the
target is generally not resumed. It will wait for GDB (this
instance or another one) to connect and continue debugging. After
the `disconnect' command, GDB is again free to connect to another
target.
File: gdb.info, Node: Server, Next: NetWare, Prev: Connecting, Up: Remote Debugging
17.2 Using the `gdbserver' program
==================================
`gdbserver' is a control program for Unix-like systems, which allows
you to connect your program with a remote GDB via `target remote'--but
without linking in the usual debugging stub.
`gdbserver' is not a complete replacement for the debugging stubs,
because it requires essentially the same operating-system facilities
that GDB itself does. In fact, a system that can run `gdbserver' to
connect to a remote GDB could also run GDB locally! `gdbserver' is
sometimes useful nevertheless, because it is a much smaller program
than GDB itself. It is also easier to port than all of GDB, so you may
be able to get started more quickly on a new system by using
`gdbserver'. Finally, if you develop code for real-time systems, you
may find that the tradeoffs involved in real-time operation make it
more convenient to do as much development work as possible on another
system, for example by cross-compiling. You can use `gdbserver' to
make a similar choice for debugging.
GDB and `gdbserver' communicate via either a serial line or a TCP
connection, using the standard GDB remote serial protocol.
_On the target machine,_
you need to have a copy of the program you want to debug.
`gdbserver' does not need your program's symbol table, so you can
strip the program if necessary to save space. GDB on the host
system does all the symbol handling.
To use the server, you must tell it how to communicate with GDB;
the name of your program; and the arguments for your program. The
usual syntax is:
target> gdbserver COMM PROGRAM [ ARGS ... ]
COMM is either a device name (to use a serial line) or a TCP
hostname and portnumber. For example, to debug Emacs with the
argument `foo.txt' and communicate with GDB over the serial port
`/dev/com1':
target> gdbserver /dev/com1 emacs foo.txt
`gdbserver' waits passively for the host GDB to communicate with
it.
To use a TCP connection instead of a serial line:
target> gdbserver host:2345 emacs foo.txt
The only difference from the previous example is the first
argument, specifying that you are communicating with the host GDB
via TCP. The `host:2345' argument means that `gdbserver' is to
expect a TCP connection from machine `host' to local TCP port 2345.
(Currently, the `host' part is ignored.) You can choose any number
you want for the port number as long as it does not conflict with
any TCP ports already in use on the target system (for example,
`23' is reserved for `telnet').(1) You must use the same port
number with the host GDB `target remote' command.
On some targets, `gdbserver' can also attach to running programs.
This is accomplished via the `--attach' argument. The syntax is:
target> gdbserver COMM --attach PID
PID is the process ID of a currently running process. It isn't
necessary to point `gdbserver' at a binary for the running process.
You can debug processes by name instead of process ID if your
target has the `pidof' utility:
target> gdbserver COMM --attach `pidof PROGRAM`
In case more than one copy of PROGRAM is running, or PROGRAM has
multiple threads, most versions of `pidof' support the `-s' option
to only return the first process ID.
_On the host machine,_
connect to your target (*note Connecting to a remote target:
Connecting.). For TCP connections, you must start up `gdbserver'
prior to using the `target remote' command. Otherwise you may get
an error whose text depends on the host system, but which usually
looks something like `Connection refused'. You don't need to use
the `load' command in GDB when using gdbserver, since the program
is already on the target.
---------- Footnotes ----------
(1) If you choose a port number that conflicts with another service,
`gdbserver' prints an error message and exits.
File: gdb.info, Node: NetWare, Next: Remote configuration, Prev: Server, Up: Remote Debugging
17.3 Using the `gdbserve.nlm' program
=====================================
`gdbserve.nlm' is a control program for NetWare systems, which allows
you to connect your program with a remote GDB via `target remote'.
GDB and `gdbserve.nlm' communicate via a serial line, using the
standard GDB remote serial protocol.
_On the target machine,_
you need to have a copy of the program you want to debug.
`gdbserve.nlm' does not need your program's symbol table, so you
can strip the program if necessary to save space. GDB on the host
system does all the symbol handling.
To use the server, you must tell it how to communicate with GDB;
the name of your program; and the arguments for your program. The
syntax is:
load gdbserve [ BOARD=BOARD ] [ PORT=PORT ]
[ BAUD=BAUD ] PROGRAM [ ARGS ... ]
BOARD and PORT specify the serial line; BAUD specifies the baud
rate used by the connection. PORT and NODE default to 0, BAUD
defaults to 9600bps.
For example, to debug Emacs with the argument `foo.txt'and
communicate with GDB over serial port number 2 or board 1 using a
19200bps connection:
load gdbserve BOARD=1 PORT=2 BAUD=19200 emacs foo.txt
__
On the GDB host machine, connect to your target (*note Connecting
to a remote target: Connecting.).
File: gdb.info, Node: Remote configuration, Next: remote stub, Prev: NetWare, Up: Remote Debugging
17.4 Remote configuration
=========================
The following configuration options are available when debugging remote
programs:
`set remote hardware-watchpoint-limit LIMIT'
`set remote hardware-breakpoint-limit LIMIT'
Restrict GDB to using LIMIT remote hardware breakpoint or
watchpoints. A limit of -1, the default, is treated as unlimited.
File: gdb.info, Node: remote stub, Prev: Remote configuration, Up: Remote Debugging
17.5 Implementing a remote stub
===============================
The stub files provided with GDB implement the target side of the
communication protocol, and the GDB side is implemented in the GDB
source file `remote.c'. Normally, you can simply allow these
subroutines to communicate, and ignore the details. (If you're
implementing your own stub file, you can still ignore the details: start
with one of the existing stub files. `sparc-stub.c' is the best
organized, and therefore the easiest to read.)
To debug a program running on another machine (the debugging
"target" machine), you must first arrange for all the usual
prerequisites for the program to run by itself. For example, for a C
program, you need:
1. A startup routine to set up the C runtime environment; these
usually have a name like `crt0'. The startup routine may be
supplied by your hardware supplier, or you may have to write your
own.
2. A C subroutine library to support your program's subroutine calls,
notably managing input and output.
3. A way of getting your program to the other machine--for example, a
download program. These are often supplied by the hardware
manufacturer, but you may have to write your own from hardware
documentation.
The next step is to arrange for your program to use a serial port to
communicate with the machine where GDB is running (the "host" machine).
In general terms, the scheme looks like this:
_On the host,_
GDB already understands how to use this protocol; when everything
else is set up, you can simply use the `target remote' command
(*note Specifying a Debugging Target: Targets.).
_On the target,_
you must link with your program a few special-purpose subroutines
that implement the GDB remote serial protocol. The file
containing these subroutines is called a "debugging stub".
On certain remote targets, you can use an auxiliary program
`gdbserver' instead of linking a stub into your program. *Note
Using the `gdbserver' program: Server, for details.
The debugging stub is specific to the architecture of the remote
machine; for example, use `sparc-stub.c' to debug programs on SPARC
boards.
These working remote stubs are distributed with GDB:
`i386-stub.c'
For Intel 386 and compatible architectures.
`m68k-stub.c'
For Motorola 680x0 architectures.
`sh-stub.c'
For Renesas SH architectures.
`sparc-stub.c'
For SPARC architectures.
`sparcl-stub.c'
For Fujitsu SPARCLITE architectures.
The `README' file in the GDB distribution may list other recently
added stubs.
* Menu:
* Stub Contents:: What the stub can do for you
* Bootstrapping:: What you must do for the stub
* Debug Session:: Putting it all together
File: gdb.info, Node: Stub Contents, Next: Bootstrapping, Up: remote stub
17.5.1 What the stub can do for you
-----------------------------------
The debugging stub for your architecture supplies these three
subroutines:
`set_debug_traps'
This routine arranges for `handle_exception' to run when your
program stops. You must call this subroutine explicitly near the
beginning of your program.
`handle_exception'
This is the central workhorse, but your program never calls it
explicitly--the setup code arranges for `handle_exception' to run
when a trap is triggered.
`handle_exception' takes control when your program stops during
execution (for example, on a breakpoint), and mediates
communications with GDB on the host machine. This is where the
communications protocol is implemented; `handle_exception' acts as
the GDB representative on the target machine. It begins by
sending summary information on the state of your program, then
continues to execute, retrieving and transmitting any information
GDB needs, until you execute a GDB command that makes your program
resume; at that point, `handle_exception' returns control to your
own code on the target machine.
`breakpoint'
Use this auxiliary subroutine to make your program contain a
breakpoint. Depending on the particular situation, this may be
the only way for GDB to get control. For instance, if your target
machine has some sort of interrupt button, you won't need to call
this; pressing the interrupt button transfers control to
`handle_exception'--in effect, to GDB. On some machines, simply
receiving characters on the serial port may also trigger a trap;
again, in that situation, you don't need to call `breakpoint' from
your own program--simply running `target remote' from the host GDB
session gets control.
Call `breakpoint' if none of these is true, or if you simply want
to make certain your program stops at a predetermined point for the
start of your debugging session.
File: gdb.info, Node: Bootstrapping, Next: Debug Session, Prev: Stub Contents, Up: remote stub
17.5.2 What you must do for the stub
------------------------------------
The debugging stubs that come with GDB are set up for a particular chip
architecture, but they have no information about the rest of your
debugging target machine.
First of all you need to tell the stub how to communicate with the
serial port.
`int getDebugChar()'
Write this subroutine to read a single character from the serial
port. It may be identical to `getchar' for your target system; a
different name is used to allow you to distinguish the two if you
wish.
`void putDebugChar(int)'
Write this subroutine to write a single character to the serial
port. It may be identical to `putchar' for your target system; a
different name is used to allow you to distinguish the two if you
wish.
If you want GDB to be able to stop your program while it is running,
you need to use an interrupt-driven serial driver, and arrange for it
to stop when it receives a `^C' (`\003', the control-C character).
That is the character which GDB uses to tell the remote system to stop.
Getting the debugging target to return the proper status to GDB
probably requires changes to the standard stub; one quick and dirty way
is to just execute a breakpoint instruction (the "dirty" part is that
GDB reports a `SIGTRAP' instead of a `SIGINT').
Other routines you need to supply are:
`void exceptionHandler (int EXCEPTION_NUMBER, void *EXCEPTION_ADDRESS)'
Write this function to install EXCEPTION_ADDRESS in the exception
handling tables. You need to do this because the stub does not
have any way of knowing what the exception handling tables on your
target system are like (for example, the processor's table might
be in ROM, containing entries which point to a table in RAM).
EXCEPTION_NUMBER is the exception number which should be changed;
its meaning is architecture-dependent (for example, different
numbers might represent divide by zero, misaligned access, etc).
When this exception occurs, control should be transferred directly
to EXCEPTION_ADDRESS, and the processor state (stack, registers,
and so on) should be just as it is when a processor exception
occurs. So if you want to use a jump instruction to reach
EXCEPTION_ADDRESS, it should be a simple jump, not a jump to
subroutine.
For the 386, EXCEPTION_ADDRESS should be installed as an interrupt
gate so that interrupts are masked while the handler runs. The
gate should be at privilege level 0 (the most privileged level).
The SPARC and 68k stubs are able to mask interrupts themselves
without help from `exceptionHandler'.
`void flush_i_cache()'
On SPARC and SPARCLITE only, write this subroutine to flush the
instruction cache, if any, on your target machine. If there is no
instruction cache, this subroutine may be a no-op.
On target machines that have instruction caches, GDB requires this
function to make certain that the state of your program is stable.
You must also make sure this library routine is available:
`void *memset(void *, int, int)'
This is the standard library function `memset' that sets an area of
memory to a known value. If you have one of the free versions of
`libc.a', `memset' can be found there; otherwise, you must either
obtain it from your hardware manufacturer, or write your own.
If you do not use the GNU C compiler, you may need other standard
library subroutines as well; this varies from one stub to another, but
in general the stubs are likely to use any of the common library
subroutines which `gcc' generates as inline code.
File: gdb.info, Node: Debug Session, Prev: Bootstrapping, Up: remote stub
17.5.3 Putting it all together
------------------------------
In summary, when your program is ready to debug, you must follow these
steps.
1. Make sure you have defined the supporting low-level routines
(*note What you must do for the stub: Bootstrapping.):
`getDebugChar', `putDebugChar',
`flush_i_cache', `memset', `exceptionHandler'.
2. Insert these lines near the top of your program:
set_debug_traps();
breakpoint();
3. For the 680x0 stub only, you need to provide a variable called
`exceptionHook'. Normally you just use:
void (*exceptionHook)() = 0;
but if before calling `set_debug_traps', you set it to point to a
function in your program, that function is called when `GDB'
continues after stopping on a trap (for example, bus error). The
function indicated by `exceptionHook' is called with one
parameter: an `int' which is the exception number.
4. Compile and link together: your program, the GDB debugging stub for
your target architecture, and the supporting subroutines.
5. Make sure you have a serial connection between your target machine
and the GDB host, and identify the serial port on the host.
6. Download your program to your target machine (or get it there by
whatever means the manufacturer provides), and start it.
7. Start GDB on the host, and connect to the target (*note Connecting
to a remote target: Connecting.).
File: gdb.info, Node: Configurations, Next: Controlling GDB, Prev: Remote Debugging, Up: Top
18 Configuration-Specific Information
*************************************
While nearly all GDB commands are available for all native and cross
versions of the debugger, there are some exceptions. This chapter
describes things that are only available in certain configurations.
There are three major categories of configurations: native
configurations, where the host and target are the same, embedded
operating system configurations, which are usually the same for several
different processor architectures, and bare embedded processors, which
are quite different from each other.
* Menu:
* Native::
* Embedded OS::
* Embedded Processors::
* Architectures::
File: gdb.info, Node: Native, Next: Embedded OS, Up: Configurations
18.1 Native
===========
This section describes details specific to particular native
configurations.
* Menu:
* HP-UX:: HP-UX
* BSD libkvm Interface:: Debugging BSD kernel memory images
* SVR4 Process Information:: SVR4 process information
* DJGPP Native:: Features specific to the DJGPP port
* Cygwin Native:: Features specific to the Cygwin port
File: gdb.info, Node: HP-UX, Next: BSD libkvm Interface, Up: Native
18.1.1 HP-UX
------------
On HP-UX systems, if you refer to a function or variable name that
begins with a dollar sign, GDB searches for a user or system name
first, before it searches for a convenience variable.
File: gdb.info, Node: BSD libkvm Interface, Next: SVR4 Process Information, Prev: HP-UX, Up: Native
18.1.2 BSD libkvm Interface
---------------------------
BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
interface that provides a uniform interface for accessing kernel virtual
memory images, including live systems and crash dumps. GDB uses this
interface to allow you to debug live kernels and kernel crash dumps on
many native BSD configurations. This is implemented as a special `kvm'
debugging target. For debugging a live system, load the currently
running kernel into GDB and connect to the `kvm' target:
(gdb) target kvm
For debugging crash dumps, provide the file name of the crash dump
as an argument:
(gdb) target kvm /var/crash/bsd.0
Once connected to the `kvm' target, the following commands are
available:
`kvm pcb'
Set current context from pcb address.
`kvm proc'
Set current context from proc address. This command isn't
available on modern FreeBSD systems.
File: gdb.info, Node: SVR4 Process Information, Next: DJGPP Native, Prev: BSD libkvm Interface, Up: Native
18.1.3 SVR4 process information
-------------------------------
Many versions of SVR4 provide a facility called `/proc' that can be
used to examine the image of a running process using file-system
subroutines. If GDB is configured for an operating system with this
facility, the command `info proc' is available to report on several
kinds of information about the process running your program. `info
proc' works only on SVR4 systems that include the `procfs' code. This
includes OSF/1 (Digital Unix), Solaris, Irix, and Unixware, but not
HP-UX or GNU/Linux, for example.
`info proc'
Summarize available information about the process.
`info proc mappings'
Report on the address ranges accessible in the program, with
information on whether your program may read, write, or execute
each range.
File: gdb.info, Node: DJGPP Native, Next: Cygwin Native, Prev: SVR4 Process Information, Up: Native
18.1.4 Features for Debugging DJGPP Programs
--------------------------------------------
DJGPP is the port of GNU development tools to MS-DOS and MS-Windows.
DJGPP programs are 32-bit protected-mode programs that use the "DPMI"
(DOS Protected-Mode Interface) API to run on top of real-mode DOS
systems and their emulations.
GDB supports native debugging of DJGPP programs, and defines a few
commands specific to the DJGPP port. This subsection describes those
commands.
`info dos'
This is a prefix of DJGPP-specific commands which print
information about the target system and important OS structures.
`info dos sysinfo'
This command displays assorted information about the underlying
platform: the CPU type and features, the OS version and flavor, the
DPMI version, and the available conventional and DPMI memory.
`info dos gdt'
`info dos ldt'
`info dos idt'
These 3 commands display entries from, respectively, Global, Local,
and Interrupt Descriptor Tables (GDT, LDT, and IDT). The
descriptor tables are data structures which store a descriptor for
each segment that is currently in use. The segment's selector is
an index into a descriptor table; the table entry for that index
holds the descriptor's base address and limit, and its attributes
and access rights.
A typical DJGPP program uses 3 segments: a code segment, a data
segment (used for both data and the stack), and a DOS segment
(which allows access to DOS/BIOS data structures and absolute
addresses in conventional memory). However, the DPMI host will
usually define additional segments in order to support the DPMI
environment.
These commands allow to display entries from the descriptor tables.
Without an argument, all entries from the specified table are
displayed. An argument, which should be an integer expression,
means display a single entry whose index is given by the argument.
For example, here's a convenient way to display information about
the debugged program's data segment:
`(gdb) info dos ldt $ds'
`0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)'
This comes in handy when you want to see whether a pointer is
outside the data segment's limit (i.e. "garbled").
`info dos pde'
`info dos pte'
These two commands display entries from, respectively, the Page
Directory and the Page Tables. Page Directories and Page Tables
are data structures which control how virtual memory addresses are
mapped into physical addresses. A Page Table includes an entry
for every page of memory that is mapped into the program's address
space; there may be several Page Tables, each one holding up to
4096 entries. A Page Directory has up to 4096 entries, one each
for every Page Table that is currently in use.
Without an argument, `info dos pde' displays the entire Page
Directory, and `info dos pte' displays all the entries in all of
the Page Tables. An argument, an integer expression, given to the
`info dos pde' command means display only that entry from the Page
Directory table. An argument given to the `info dos pte' command
means display entries from a single Page Table, the one pointed to
by the specified entry in the Page Directory.
These commands are useful when your program uses "DMA" (Direct
Memory Access), which needs physical addresses to program the DMA
controller.
These commands are supported only with some DPMI servers.
`info dos address-pte ADDR'
This command displays the Page Table entry for a specified linear
address. The argument linear address ADDR should already have the
appropriate segment's base address added to it, because this
command accepts addresses which may belong to _any_ segment. For
example, here's how to display the Page Table entry for the page
where the variable `i' is stored:
`(gdb) info dos address-pte __djgpp_base_address + (char *)&i'
`Page Table entry for address 0x11a00d30:'
`Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30'
This says that `i' is stored at offset `0xd30' from the page whose
physical base address is `0x02698000', and prints all the
attributes of that page.
Note that you must cast the addresses of variables to a `char *',
since otherwise the value of `__djgpp_base_address', the base
address of all variables and functions in a DJGPP program, will be
added using the rules of C pointer arithmetics: if `i' is declared
an `int', GDB will add 4 times the value of `__djgpp_base_address'
to the address of `i'.
Here's another example, it displays the Page Table entry for the
transfer buffer:
`(gdb) info dos address-pte *((unsigned *)&_go32_info_block + 3)'
`Page Table entry for address 0x29110:'
`Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110'
(The `+ 3' offset is because the transfer buffer's address is the
3rd member of the `_go32_info_block' structure.) The output of
this command clearly shows that addresses in conventional memory
are mapped 1:1, i.e. the physical and linear addresses are
identical.
This command is supported only with some DPMI servers.
File: gdb.info, Node: Cygwin Native, Prev: DJGPP Native, Up: Native
18.1.5 Features for Debugging MS Windows PE executables
-------------------------------------------------------
GDB supports native debugging of MS Windows programs, including DLLs
with and without symbolic debugging information. There are various
additional Cygwin-specific commands, described in this subsection. The
subsubsection *note Non-debug DLL symbols:: describes working with DLLs
that have no debugging symbols.
`info w32'
This is a prefix of MS Windows specific commands which print
information about the target system and important OS structures.
`info w32 selector'
This command displays information returned by the Win32 API
`GetThreadSelectorEntry' function. It takes an optional argument
that is evaluated to a long value to give the information about
this given selector. Without argument, this command displays
information about the the six segment registers.
`info dll'
This is a Cygwin specific alias of info shared.
`dll-symbols'
This command loads symbols from a dll similarly to add-sym command
but without the need to specify a base address.
`set new-console MODE'
If MODE is `on' the debuggee will be started in a new console on
next start. If MODE is `off'i, the debuggee will be started in
the same console as the debugger.
`show new-console'
Displays whether a new console is used when the debuggee is
started.
`set new-group MODE'
This boolean value controls whether the debuggee should start a
new group or stay in the same group as the debugger. This affects
the way the Windows OS handles Ctrl-C.
`show new-group'
Displays current value of new-group boolean.
`set debugevents'
This boolean value adds debug output concerning events seen by the
debugger.
`set debugexec'
This boolean value adds debug output concerning execute events
seen by the debugger.
`set debugexceptions'
This boolean value adds debug ouptut concerning exception events
seen by the debugger.
`set debugmemory'
This boolean value adds debug ouptut concerning memory events seen
by the debugger.
`set shell'
This boolean values specifies whether the debuggee is called via a
shell or directly (default value is on).
`show shell'
Displays if the debuggee will be started with a shell.
* Menu:
* Non-debug DLL symbols:: Support for DLLs without debugging symbols
File: gdb.info, Node: Non-debug DLL symbols, Up: Cygwin Native
18.1.5.1 Support for DLLs without debugging symbols
...................................................
Very often on windows, some of the DLLs that your program relies on do
not include symbolic debugging information (for example,
`kernel32.dll'). When GDB doesn't recognize any debugging symbols in a
DLL, it relies on the minimal amount of symbolic information contained
in the DLL's export table. This subsubsection describes working with
such symbols, known internally to GDB as "minimal symbols".
Note that before the debugged program has started execution, no DLLs
will have been loaded. The easiest way around this problem is simply to
start the program -- either by setting a breakpoint or letting the
program run once to completion. It is also possible to force GDB to
load a particular DLL before starting the executable -- see the shared
library information in *note Files:: or the `dll-symbols' command in
*note Cygwin Native::. Currently, explicitly loading symbols from a DLL
with no debugging information will cause the symbol names to be
duplicated in GDB's lookup table, which may adversely affect symbol
lookup performance.
18.1.5.2 DLL name prefixes
..........................
In keeping with the naming conventions used by the Microsoft debugging
tools, DLL export symbols are made available with a prefix based on the
DLL name, for instance `KERNEL32!CreateFileA'. The plain name is also
entered into the symbol table, so `CreateFileA' is often sufficient. In
some cases there will be name clashes within a program (particularly if
the executable itself includes full debugging symbols) necessitating
the use of the fully qualified name when referring to the contents of
the DLL. Use single-quotes around the name to avoid the exclamation
mark ("!") being interpreted as a language operator.
Note that the internal name of the DLL may be all upper-case, even
though the file name of the DLL is lower-case, or vice-versa. Since
symbols within GDB are _case-sensitive_ this may cause some confusion.
If in doubt, try the `info functions' and `info variables' commands or
even `maint print msymbols' (see *note Symbols::). Here's an example:
(gdb) info function CreateFileA
All functions matching regular expression "CreateFileA":
Non-debugging symbols:
0x77e885f4 CreateFileA
0x77e885f4 KERNEL32!CreateFileA
(gdb) info function !
All functions matching regular expression "!":
Non-debugging symbols:
0x6100114c cygwin1!__assert
0x61004034 cygwin1!_dll_crt0@0
0x61004240 cygwin1!dll_crt0(per_process *)
[etc...]
18.1.5.3 Working with minimal symbols
.....................................
Symbols extracted from a DLL's export table do not contain very much
type information. All that GDB can do is guess whether a symbol refers
to a function or variable depending on the linker section that contains
the symbol. Also note that the actual contents of the memory contained
in a DLL are not available unless the program is running. This means
that you cannot examine the contents of a variable or disassemble a
function within a DLL without a running program.
Variables are generally treated as pointers and dereferenced
automatically. For this reason, it is often necessary to prefix a
variable name with the address-of operator ("&") and provide explicit
type information in the command. Here's an example of the type of
problem:
(gdb) print 'cygwin1!__argv'
$1 = 268572168
(gdb) x 'cygwin1!__argv'
0x10021610: "\230y\""
And two possible solutions:
(gdb) print ((char **)'cygwin1!__argv')[0]
$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
(gdb) x/2x &'cygwin1!__argv'
0x610c0aa8 : 0x10021608 0x00000000
(gdb) x/x 0x10021608
0x10021608: 0x0022fd98
(gdb) x/s 0x0022fd98
0x22fd98: "/cygdrive/c/mydirectory/myprogram"
Setting a break point within a DLL is possible even before the
program starts execution. However, under these circumstances, GDB can't
examine the initial instructions of the function in order to skip the
function's frame set-up code. You can work around this by using "*&" to
set the breakpoint at a raw memory address:
(gdb) break *&'python22!PyOS_Readline'
Breakpoint 1 at 0x1e04eff0
The author of these extensions is not entirely convinced that
setting a break point within a shared DLL like `kernel32.dll' is
completely safe.
File: gdb.info, Node: Embedded OS, Next: Embedded Processors, Prev: Native, Up: Configurations
18.2 Embedded Operating Systems
===============================
This section describes configurations involving the debugging of
embedded operating systems that are available for several different
architectures.
* Menu:
* VxWorks:: Using GDB with VxWorks
GDB includes the ability to debug programs running on various
real-time operating systems.
File: gdb.info, Node: VxWorks, Up: Embedded OS
18.2.1 Using GDB with VxWorks
-----------------------------
`target vxworks MACHINENAME'
A VxWorks system, attached via TCP/IP. The argument MACHINENAME
is the target system's machine name or IP address.
On VxWorks, `load' links FILENAME dynamically on the current target
system as well as adding its symbols in GDB.
GDB enables developers to spawn and debug tasks running on networked
VxWorks targets from a Unix host. Already-running tasks spawned from
the VxWorks shell can also be debugged. GDB uses code that runs on
both the Unix host and on the VxWorks target. The program `gdb' is
installed and executed on the Unix host. (It may be installed with the
name `vxgdb', to distinguish it from a GDB for debugging programs on
the host itself.)
`VxWorks-timeout ARGS'
All VxWorks-based targets now support the option `vxworks-timeout'.
This option is set by the user, and ARGS represents the number of
seconds GDB waits for responses to rpc's. You might use this if
your VxWorks target is a slow software simulator or is on the far
side of a thin network line.
The following information on connecting to VxWorks was current when
this manual was produced; newer releases of VxWorks may use revised
procedures.
To use GDB with VxWorks, you must rebuild your VxWorks kernel to
include the remote debugging interface routines in the VxWorks library
`rdb.a'. To do this, define `INCLUDE_RDB' in the VxWorks configuration
file `configAll.h' and rebuild your VxWorks kernel. The resulting
kernel contains `rdb.a', and spawns the source debugging task
`tRdbTask' when VxWorks is booted. For more information on configuring
and remaking VxWorks, see the manufacturer's manual.
Once you have included `rdb.a' in your VxWorks system image and set
your Unix execution search path to find GDB, you are ready to run GDB.
From your Unix host, run `gdb' (or `vxgdb', depending on your
installation).
GDB comes up showing the prompt:
(vxgdb)
* Menu:
* VxWorks Connection:: Connecting to VxWorks
* VxWorks Download:: VxWorks download
* VxWorks Attach:: Running tasks
File: gdb.info, Node: VxWorks Connection, Next: VxWorks Download, Up: VxWorks
18.2.1.1 Connecting to VxWorks
..............................
The GDB command `target' lets you connect to a VxWorks target on the
network. To connect to a target whose host name is "`tt'", type:
(vxgdb) target vxworks tt
GDB displays messages like these:
Attaching remote machine across net...
Connected to tt.
GDB then attempts to read the symbol tables of any object modules
loaded into the VxWorks target since it was last booted. GDB locates
these files by searching the directories listed in the command search
path (*note Your program's environment: Environment.); if it fails to
find an object file, it displays a message such as:
prog.o: No such file or directory.
When this happens, add the appropriate directory to the search path
with the GDB command `path', and execute the `target' command again.
File: gdb.info, Node: VxWorks Download, Next: VxWorks Attach, Prev: VxWorks Connection, Up: VxWorks
18.2.1.2 VxWorks download
.........................
If you have connected to the VxWorks target and you want to debug an
object that has not yet been loaded, you can use the GDB `load' command
to download a file from Unix to VxWorks incrementally. The object file
given as an argument to the `load' command is actually opened twice:
first by the VxWorks target in order to download the code, then by GDB
in order to read the symbol table. This can lead to problems if the
current working directories on the two systems differ. If both systems
have NFS mounted the same filesystems, you can avoid these problems by
using absolute paths. Otherwise, it is simplest to set the working
directory on both systems to the directory in which the object file
resides, and then to reference the file by its name, without any path.
For instance, a program `prog.o' may reside in `VXPATH/vw/demo/rdb' in
VxWorks and in `HOSTPATH/vw/demo/rdb' on the host. To load this
program, type this on VxWorks:
-> cd "VXPATH/vw/demo/rdb"
Then, in GDB, type:
(vxgdb) cd HOSTPATH/vw/demo/rdb
(vxgdb) load prog.o
GDB displays a response similar to this:
Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
You can also use the `load' command to reload an object module after
editing and recompiling the corresponding source file. Note that this
makes GDB delete all currently-defined breakpoints, auto-displays, and
convenience variables, and to clear the value history. (This is
necessary in order to preserve the integrity of debugger's data
structures that reference the target system's symbol table.)
File: gdb.info, Node: VxWorks Attach, Prev: VxWorks Download, Up: VxWorks
18.2.1.3 Running tasks
......................
You can also attach to an existing task using the `attach' command as
follows:
(vxgdb) attach TASK
where TASK is the VxWorks hexadecimal task ID. The task can be running
or suspended when you attach to it. Running tasks are suspended at the
time of attachment.
File: gdb.info, Node: Embedded Processors, Next: Architectures, Prev: Embedded OS, Up: Configurations
18.3 Embedded Processors
========================
This section goes into details specific to particular embedded
configurations.
* Menu:
* ARM:: ARM
* H8/300:: Renesas H8/300
* H8/500:: Renesas H8/500
* M32R/D:: Renesas M32R/D
* M68K:: Motorola M68K
* MIPS Embedded:: MIPS Embedded
* OpenRISC 1000:: OpenRisc 1000
* PA:: HP PA Embedded
* PowerPC: PowerPC
* SH:: Renesas SH
* Sparclet:: Tsqware Sparclet
* Sparclite:: Fujitsu Sparclite
* ST2000:: Tandem ST2000
* Z8000:: Zilog Z8000
File: gdb.info, Node: ARM, Next: H8/300, Up: Embedded Processors
18.3.1 ARM
----------
`target rdi DEV'
ARM Angel monitor, via RDI library interface to ADP protocol. You
may use this target to communicate with both boards running the
Angel monitor, or with the EmbeddedICE JTAG debug device.
`target rdp DEV'
ARM Demon monitor.
File: gdb.info, Node: H8/300, Next: H8/500, Prev: ARM, Up: Embedded Processors
18.3.2 Renesas H8/300
---------------------
`target hms DEV'
A Renesas SH, H8/300, or H8/500 board, attached via serial line to
your host. Use special commands `device' and `speed' to control
the serial line and the communications speed used.
`target e7000 DEV'
E7000 emulator for Renesas H8 and SH.
`target sh3 DEV'
`target sh3e DEV'
Renesas SH-3 and SH-3E target systems.
When you select remote debugging to a Renesas SH, H8/300, or H8/500
board, the `load' command downloads your program to the Renesas board
and also opens it as the current executable target for GDB on your host
(like the `file' command).
GDB needs to know these things to talk to your Renesas SH, H8/300,
or H8/500:
1. that you want to use `target hms', the remote debugging interface
for Renesas microprocessors, or `target e7000', the in-circuit
emulator for the Renesas SH and the Renesas 300H. (`target hms' is
the default when GDB is configured specifically for the Renesas SH,
H8/300, or H8/500.)
2. what serial device connects your host to your Renesas board (the
first serial device available on your host is the default).
3. what speed to use over the serial device.
* Menu:
* Renesas Boards:: Connecting to Renesas boards.
* Renesas ICE:: Using the E7000 In-Circuit Emulator.
* Renesas Special:: Special GDB commands for Renesas micros.
File: gdb.info, Node: Renesas Boards, Next: Renesas ICE, Up: H8/300
18.3.2.1 Connecting to Renesas boards
.....................................
Use the special `GDB' command `device PORT' if you need to explicitly
set the serial device. The default PORT is the first available port on
your host. This is only necessary on Unix hosts, where it is typically
something like `/dev/ttya'.
`GDB' has another special command to set the communications speed:
`speed BPS'. This command also is only used from Unix hosts; on DOS
hosts, set the line speed as usual from outside GDB with the DOS `mode'
command (for instance, `mode com2:9600,n,8,1,p' for a 9600bps
connection).
The `device' and `speed' commands are available only when you use a
Unix host to debug your Renesas microprocessor programs. If you use a
DOS host, GDB depends on an auxiliary terminate-and-stay-resident
program called `asynctsr' to communicate with the development board
through a PC serial port. You must also use the DOS `mode' command to
set up the serial port on the DOS side.
The following sample session illustrates the steps needed to start a
program under GDB control on an H8/300. The example uses a sample
H8/300 program called `t.x'. The procedure is the same for the Renesas
SH and the H8/500.
First hook up your development board. In this example, we use a
board attached to serial port `COM2'; if you use a different serial
port, substitute its name in the argument of the `mode' command. When
you call `asynctsr', the auxiliary comms program used by the debugger,
you give it just the numeric part of the serial port's name; for
example, `asyncstr 2' below runs `asyncstr' on `COM2'.
C:\H8300\TEST> asynctsr 2
C:\H8300\TEST> mode com2:9600,n,8,1,p
Resident portion of MODE loaded
COM2: 9600, n, 8, 1, p
_Warning:_ We have noticed a bug in PC-NFS that conflicts with
`asynctsr'. If you also run PC-NFS on your DOS host, you may need
to disable it, or even boot without it, to use `asynctsr' to
control your development board.
Now that serial communications are set up, and the development board
is connected, you can start up GDB. Call `gdb' with the name of your
program as the argument. `GDB' prompts you, as usual, with the prompt
`(gdb)'. Use two special commands to begin your debugging session:
`target hms' to specify cross-debugging to the Renesas board, and the
`load' command to download your program to the board. `load' displays
the names of the program's sections, and a `*' for each 2K of data
downloaded. (If you want to refresh GDB data on symbols or on the
executable file without downloading, use the GDB commands `file' or
`symbol-file'. These commands, and `load' itself, are described in
*Note Commands to specify files: Files.)
(eg-C:\H8300\TEST) gdb t.x
GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.
There is absolutely no warranty for GDB; type "show warranty"
for details.
GDB 6.3, Copyright 1992 Free Software Foundation, Inc...
(gdb) target hms
Connected to remote H8/300 HMS system.
(gdb) load t.x
.text : 0x8000 .. 0xabde ***********
.data : 0xabde .. 0xad30 *
.stack : 0xf000 .. 0xf014 *
At this point, you're ready to run or debug your program. From here
on, you can use all the usual GDB commands. The `break' command sets
breakpoints; the `run' command starts your program; `print' or `x'
display data; the `continue' command resumes execution after stopping
at a breakpoint. You can use the `help' command at any time to find
out more about GDB commands.
Remember, however, that _operating system_ facilities aren't
available on your development board; for example, if your program hangs,
you can't send an interrupt--but you can press the RESET switch!
Use the RESET button on the development board
* to interrupt your program (don't use `ctl-C' on the DOS host--it
has no way to pass an interrupt signal to the development board);
and
* to return to the GDB command prompt after your program finishes
normally. The communications protocol provides no other way for
GDB to detect program completion.
In either case, GDB sees the effect of a RESET on the development
board as a "normal exit" of your program.
File: gdb.info, Node: Renesas ICE, Next: Renesas Special, Prev: Renesas Boards, Up: H8/300
18.3.2.2 Using the E7000 in-circuit emulator
............................................
You can use the E7000 in-circuit emulator to develop code for either the
Renesas SH or the H8/300H. Use one of these forms of the `target
e7000' command to connect GDB to your E7000:
`target e7000 PORT SPEED'
Use this form if your E7000 is connected to a serial port. The
PORT argument identifies what serial port to use (for example,
`com2'). The third argument is the line speed in bits per second
(for example, `9600').
`target e7000 HOSTNAME'
If your E7000 is installed as a host on a TCP/IP network, you can
just specify its hostname; GDB uses `telnet' to connect.
File: gdb.info, Node: Renesas Special, Prev: Renesas ICE, Up: H8/300
18.3.2.3 Special GDB commands for Renesas micros
................................................
Some GDB commands are available only for the H8/300:
`set machine h8300'
`set machine h8300h'
Condition GDB for one of the two variants of the H8/300
architecture with `set machine'. You can use `show machine' to
check which variant is currently in effect.
File: gdb.info, Node: H8/500, Next: M32R/D, Prev: H8/300, Up: Embedded Processors
18.3.3 H8/500
-------------
`set memory MOD'
`show memory'
Specify which H8/500 memory model (MOD) you are using with `set
memory'; check which memory model is in effect with `show memory'.
The accepted values for MOD are `small', `big', `medium', and
`compact'.
File: gdb.info, Node: M32R/D, Next: M68K, Prev: H8/500, Up: Embedded Processors
18.3.4 Renesas M32R/D
---------------------
`target m32r DEV'
Renesas M32R/D ROM monitor.
`target m32rsdi DEV'
Renesas M32R SDI server, connected via parallel port to the board.
File: gdb.info, Node: M68K, Next: MIPS Embedded, Prev: M32R/D, Up: Embedded Processors
18.3.5 M68k
-----------
The Motorola m68k configuration includes ColdFire support, and target
command for the following ROM monitors.
`target abug DEV'
ABug ROM monitor for M68K.
`target cpu32bug DEV'
CPU32BUG monitor, running on a CPU32 (M68K) board.
`target dbug DEV'
dBUG ROM monitor for Motorola ColdFire.
`target est DEV'
EST-300 ICE monitor, running on a CPU32 (M68K) board.
`target rom68k DEV'
ROM 68K monitor, running on an M68K IDP board.
`target rombug DEV'
ROMBUG ROM monitor for OS/9000.
File: gdb.info, Node: MIPS Embedded, Next: OpenRISC 1000, Prev: M68K, Up: Embedded Processors
18.3.6 MIPS Embedded
--------------------
GDB can use the MIPS remote debugging protocol to talk to a MIPS board
attached to a serial line. This is available when you configure GDB
with `--target=mips-idt-ecoff'.
Use these GDB commands to specify the connection to your target
board:
`target mips PORT'
To run a program on the board, start up `gdb' with the name of
your program as the argument. To connect to the board, use the
command `target mips PORT', where PORT is the name of the serial
port connected to the board. If the program has not already been
downloaded to the board, you may use the `load' command to
download it. You can then use all the usual GDB commands.
For example, this sequence connects to the target board through a
serial port, and loads and runs a program called PROG through the
debugger:
host$ gdb PROG
GDB is free software and ...
(gdb) target mips /dev/ttyb
(gdb) load PROG
(gdb) run
`target mips HOSTNAME:PORTNUMBER'
On some GDB host configurations, you can specify a TCP connection
(for instance, to a serial line managed by a terminal
concentrator) instead of a serial port, using the syntax
`HOSTNAME:PORTNUMBER'.
`target pmon PORT'
PMON ROM monitor.
`target ddb PORT'
NEC's DDB variant of PMON for Vr4300.
`target lsi PORT'
LSI variant of PMON.
`target r3900 DEV'
Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
`target array DEV'
Array Tech LSI33K RAID controller board.
GDB also supports these special commands for MIPS targets:
`set processor ARGS'
`show processor'
Use the `set processor' command to set the type of MIPS processor
when you want to access processor-type-specific registers. For
example, `set processor R3041' tells GDB to use the CPU registers
appropriate for the 3041 chip. Use the `show processor' command
to see what MIPS processor GDB is using. Use the `info reg'
command to see what registers GDB is using.
`set mipsfpu double'
`set mipsfpu single'
`set mipsfpu none'
`show mipsfpu'
If your target board does not support the MIPS floating point
coprocessor, you should use the command `set mipsfpu none' (if you
need this, you may wish to put the command in your GDB init file).
This tells GDB how to find the return value of functions which
return floating point values. It also allows GDB to avoid saving
the floating point registers when calling functions on the board.
If you are using a floating point coprocessor with only single
precision floating point support, as on the R4650 processor, use
the command `set mipsfpu single'. The default double precision
floating point coprocessor may be selected using `set mipsfpu
double'.
In previous versions the only choices were double precision or no
floating point, so `set mipsfpu on' will select double precision
and `set mipsfpu off' will select no floating point.
As usual, you can inquire about the `mipsfpu' variable with `show
mipsfpu'.
`set remotedebug N'
`show remotedebug'
You can see some debugging information about communications with
the board by setting the `remotedebug' variable. If you set it to
`1' using `set remotedebug 1', every packet is displayed. If you
set it to `2', every character is displayed. You can check the
current value at any time with the command `show remotedebug'.
`set timeout SECONDS'
`set retransmit-timeout SECONDS'
`show timeout'
`show retransmit-timeout'
You can control the timeout used while waiting for a packet, in
the MIPS remote protocol, with the `set timeout SECONDS' command.
The default is 5 seconds. Similarly, you can control the timeout
used while waiting for an acknowledgement of a packet with the `set
retransmit-timeout SECONDS' command. The default is 3 seconds.
You can inspect both values with `show timeout' and `show
retransmit-timeout'. (These commands are _only_ available when
GDB is configured for `--target=mips-idt-ecoff'.)
The timeout set by `set timeout' does not apply when GDB is
waiting for your program to stop. In that case, GDB waits forever
because it has no way of knowing how long the program is going to
run before stopping.
File: gdb.info, Node: OpenRISC 1000, Next: PA, Prev: MIPS Embedded, Up: Embedded Processors
18.3.7 OpenRISC 1000
--------------------
See OR1k Architecture document (`www.opencores.org') for more
information about platform and commands.
`target jtag jtag://HOST:PORT'
Connects to remote JTAG server. JTAG remote server can be either
an or1ksim or JTAG server, connected via parallel port to the
board.
Example: `target jtag jtag://localhost:9999'
`or1ksim COMMAND'
If connected to `or1ksim' OpenRISC 1000 Architectural Simulator,
proprietary commands can be executed.
`info or1k spr'
Displays spr groups.
`info or1k spr GROUP'
`info or1k spr GROUPNO'
Displays register names in selected group.
`info or1k spr GROUP REGISTER'
`info or1k spr REGISTER'
`info or1k spr GROUPNO REGISTERNO'
`info or1k spr REGISTERNO'
Shows information about specified spr register.
`spr GROUP REGISTER VALUE'
`spr REGISTER VALUE'
`spr GROUPNO REGISTERNO VALUE'
`spr REGISTERNO VALUE'
Writes VALUE to specified spr register.
Some implementations of OpenRISC 1000 Architecture also have
hardware trace. It is very similar to GDB trace, except it does not
interfere with normal program execution and is thus much faster.
Hardware breakpoints/watchpoint triggers can be set using:
`$LEA/$LDATA'
Load effective address/data
`$SEA/$SDATA'
Store effective address/data
`$AEA/$ADATA'
Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
`$FETCH'
Fetch data
When triggered, it can capture low level data, like: `PC', `LSEA',
`LDATA', `SDATA', `READSPR', `WRITESPR', `INSTR'.
`htrace' commands:
`hwatch CONDITIONAL'
Set hardware watchpoint on combination of Load/Store Effecive
Address(es) or Data. For example:
`hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) &&
($SDATA >= 50)'
`hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) &&
($SDATA >= 50)'
`htrace info'
Display information about current HW trace configuration.
`htrace trigger CONDITIONAL'
Set starting criteria for HW trace.
`htrace qualifier CONDITIONAL'
Set acquisition qualifier for HW trace.
`htrace stop CONDITIONAL'
Set HW trace stopping criteria.
`htrace record [DATA]*'
Selects the data to be recorded, when qualifier is met and HW
trace was triggered.
`htrace enable'
`htrace disable'
Enables/disables the HW trace.
`htrace rewind [FILENAME]'
Clears currently recorded trace data.
If filename is specified, new trace file is made and any newly
collected data will be written there.
`htrace print [START [LEN]]'
Prints trace buffer, using current record configuration.
`htrace mode continuous'
Set continuous trace mode.
`htrace mode suspend'
Set suspend trace mode.
File: gdb.info, Node: PA, Next: PowerPC, Prev: OpenRISC 1000, Up: Embedded Processors
18.3.9 HP PA Embedded
---------------------
`target op50n DEV'
OP50N monitor, running on an OKI HPPA board.
`target w89k DEV'
W89K monitor, running on a Winbond HPPA board.
File: gdb.info, Node: PowerPC, Next: SH, Prev: PA, Up: Embedded Processors
18.3.8 PowerPC
--------------
`target dink32 DEV'
DINK32 ROM monitor.
`target ppcbug DEV'
`target ppcbug1 DEV'
PPCBUG ROM monitor for PowerPC.
`target sds DEV'
SDS monitor, running on a PowerPC board (such as Motorola's ADS).
File: gdb.info, Node: SH, Next: Sparclet, Prev: PowerPC, Up: Embedded Processors
18.3.10 Renesas SH
------------------
`target hms DEV'
A Renesas SH board attached via serial line to your host. Use
special commands `device' and `speed' to control the serial line
and the communications speed used.
`target e7000 DEV'
E7000 emulator for Renesas SH.
`target sh3 DEV'
`target sh3e DEV'
Renesas SH-3 and SH-3E target systems.
File: gdb.info, Node: Sparclet, Next: Sparclite, Prev: SH, Up: Embedded Processors
18.3.11 Tsqware Sparclet
------------------------
GDB enables developers to debug tasks running on Sparclet targets from
a Unix host. GDB uses code that runs on both the Unix host and on the
Sparclet target. The program `gdb' is installed and executed on the
Unix host.
`remotetimeout ARGS'
GDB supports the option `remotetimeout'. This option is set by
the user, and ARGS represents the number of seconds GDB waits for
responses.
When compiling for debugging, include the options `-g' to get debug
information and `-Ttext' to relocate the program to where you wish to
load it on the target. You may also want to add the options `-n' or
`-N' in order to reduce the size of the sections. Example:
sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
You can use `objdump' to verify that the addresses are what you
intended:
sparclet-aout-objdump --headers --syms prog
Once you have set your Unix execution search path to find GDB, you
are ready to run GDB. From your Unix host, run `gdb' (or
`sparclet-aout-gdb', depending on your installation).
GDB comes up showing the prompt:
(gdbslet)
* Menu:
* Sparclet File:: Setting the file to debug
* Sparclet Connection:: Connecting to Sparclet
* Sparclet Download:: Sparclet download
* Sparclet Execution:: Running and debugging
File: gdb.info, Node: Sparclet File, Next: Sparclet Connection, Up: Sparclet
18.3.11.1 Setting file to debug
...............................
The GDB command `file' lets you choose with program to debug.
(gdbslet) file prog
GDB then attempts to read the symbol table of `prog'. GDB locates
the file by searching the directories listed in the command search path.
If the file was compiled with debug information (option "-g"), source
files will be searched as well. GDB locates the source files by
searching the directories listed in the directory search path (*note
Your program's environment: Environment.). If it fails to find a file,
it displays a message such as:
prog: No such file or directory.
When this happens, add the appropriate directories to the search
paths with the GDB commands `path' and `dir', and execute the `target'
command again.
File: gdb.info, Node: Sparclet Connection, Next: Sparclet Download, Prev: Sparclet File, Up: Sparclet
18.3.11.2 Connecting to Sparclet
................................
The GDB command `target' lets you connect to a Sparclet target. To
connect to a target on serial port "`ttya'", type:
(gdbslet) target sparclet /dev/ttya
Remote target sparclet connected to /dev/ttya
main () at ../prog.c:3
GDB displays messages like these:
Connected to ttya.
File: gdb.info, Node: Sparclet Download, Next: Sparclet Execution, Prev: Sparclet Connection, Up: Sparclet
18.3.11.3 Sparclet download
...........................
Once connected to the Sparclet target, you can use the GDB `load'
command to download the file from the host to the target. The file
name and load offset should be given as arguments to the `load' command.
Since the file format is aout, the program must be loaded to the
starting address. You can use `objdump' to find out what this value
is. The load offset is an offset which is added to the VMA (virtual
memory address) of each of the file's sections. For instance, if the
program `prog' was linked to text address 0x1201000, with data at
0x12010160 and bss at 0x12010170, in GDB, type:
(gdbslet) load prog 0x12010000
Loading section .text, size 0xdb0 vma 0x12010000
If the code is loaded at a different address then what the program
was linked to, you may need to use the `section' and `add-symbol-file'
commands to tell GDB where to map the symbol table.
File: gdb.info, Node: Sparclet Execution, Prev: Sparclet Download, Up: Sparclet
18.3.11.4 Running and debugging
...............................
You can now begin debugging the task using GDB's execution control
commands, `b', `step', `run', etc. See the GDB manual for the list of
commands.
(gdbslet) b main
Breakpoint 1 at 0x12010000: file prog.c, line 3.
(gdbslet) run
Starting program: prog
Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
3 char *symarg = 0;
(gdbslet) step
4 char *execarg = "hello!";
(gdbslet)
File: gdb.info, Node: Sparclite, Next: ST2000, Prev: Sparclet, Up: Embedded Processors
18.3.12 Fujitsu Sparclite
-------------------------
`target sparclite DEV'
Fujitsu sparclite boards, used only for the purpose of loading.
You must use an additional command to debug the program. For
example: target remote DEV using GDB standard remote protocol.
File: gdb.info, Node: ST2000, Next: Z8000, Prev: Sparclite, Up: Embedded Processors
18.3.13 Tandem ST2000
---------------------
GDB may be used with a Tandem ST2000 phone switch, running Tandem's
STDBUG protocol.
To connect your ST2000 to the host system, see the manufacturer's
manual. Once the ST2000 is physically attached, you can run:
target st2000 DEV SPEED
to establish it as your debugging environment. DEV is normally the
name of a serial device, such as `/dev/ttya', connected to the ST2000
via a serial line. You can instead specify DEV as a TCP connection
(for example, to a serial line attached via a terminal concentrator)
using the syntax `HOSTNAME:PORTNUMBER'.
The `load' and `attach' commands are _not_ defined for this target;
you must load your program into the ST2000 as you normally would for
standalone operation. GDB reads debugging information (such as
symbols) from a separate, debugging version of the program available on
your host computer.
These auxiliary GDB commands are available to help you with the
ST2000 environment:
`st2000 COMMAND'
Send a COMMAND to the STDBUG monitor. See the manufacturer's
manual for available commands.
`connect'
Connect the controlling terminal to the STDBUG command monitor.
When you are done interacting with STDBUG, typing either of two
character sequences gets you back to the GDB command prompt:
`~.' (Return, followed by tilde and period) or `~'
(Return, followed by tilde and control-D).
File: gdb.info, Node: Z8000, Prev: ST2000, Up: Embedded Processors
18.3.14 Zilog Z8000
-------------------
When configured for debugging Zilog Z8000 targets, GDB includes a Z8000
simulator.
For the Z8000 family, `target sim' simulates either the Z8002 (the
unsegmented variant of the Z8000 architecture) or the Z8001 (the
segmented variant). The simulator recognizes which architecture is
appropriate by inspecting the object code.
`target sim ARGS'
Debug programs on a simulated CPU. If the simulator supports setup
options, specify them via ARGS.
After specifying this target, you can debug programs for the simulated
CPU in the same style as programs for your host computer; use the
`file' command to load a new program image, the `run' command to run
your program, and so on.
As well as making available all the usual machine registers (*note
Registers: Registers.), the Z8000 simulator provides three additional
items of information as specially named registers:
`cycles'
Counts clock-ticks in the simulator.
`insts'
Counts instructions run in the simulator.
`time'
Execution time in 60ths of a second.
You can refer to these values in GDB expressions with the usual
conventions; for example, `b fputc if $cycles>5000' sets a conditional
breakpoint that suspends only after at least 5000 simulated clock ticks.
File: gdb.info, Node: Architectures, Prev: Embedded Processors, Up: Configurations
18.4 Architectures
==================
This section describes characteristics of architectures that affect all
uses of GDB with the architecture, both native and cross.
* Menu:
* A29K::
* Alpha::
* MIPS::
File: gdb.info, Node: A29K, Next: Alpha, Up: Architectures
18.4.1 A29K
-----------
`set rstack_high_address ADDRESS'
On AMD 29000 family processors, registers are saved in a separate
"register stack". There is no way for GDB to determine the extent
of this stack. Normally, GDB just assumes that the stack is
"large enough". This may result in GDB referencing memory
locations that do not exist. If necessary, you can get around
this problem by specifying the ending address of the register
stack with the `set rstack_high_address' command. The argument
should be an address, which you probably want to precede with `0x'
to specify in hexadecimal.
`show rstack_high_address'
Display the current limit of the register stack, on AMD 29000
family processors.
File: gdb.info, Node: Alpha, Next: MIPS, Prev: A29K, Up: Architectures
18.4.2 Alpha
------------
See the following section.
File: gdb.info, Node: MIPS, Prev: Alpha, Up: Architectures
18.4.3 MIPS
-----------
Alpha- and MIPS-based computers use an unusual stack frame, which
sometimes requires GDB to search backward in the object code to find
the beginning of a function.
To improve response time (especially for embedded applications, where
GDB may be restricted to a slow serial line for this search) you may
want to limit the size of this search, using one of these commands:
`set heuristic-fence-post LIMIT'
Restrict GDB to examining at most LIMIT bytes in its search for
the beginning of a function. A value of 0 (the default) means
there is no limit. However, except for 0, the larger the limit
the more bytes `heuristic-fence-post' must search and therefore
the longer it takes to run.
`show heuristic-fence-post'
Display the current limit.
These commands are available _only_ when GDB is configured for
debugging programs on Alpha or MIPS processors.
File: gdb.info, Node: Controlling GDB, Next: Sequences, Prev: Configurations, Up: Top
19 Controlling GDB
******************
You can alter the way GDB interacts with you by using the `set'
command. For commands controlling how GDB displays data, see *Note
Print settings: Print Settings. Other settings are described here.
* Menu:
* Prompt:: Prompt
* Editing:: Command editing
* History:: Command history
* Screen Size:: Screen size
* Numbers:: Numbers
* ABI:: Configuring the current ABI
* Messages/Warnings:: Optional warnings and messages
* Debugging Output:: Optional messages about internal happenings
File: gdb.info, Node: Prompt, Next: Editing, Up: Controlling GDB
19.1 Prompt
===========
GDB indicates its readiness to read a command by printing a string
called the "prompt". This string is normally `(gdb)'. You can change
the prompt string with the `set prompt' command. For instance, when
debugging GDB with GDB, it is useful to change the prompt in one of the
GDB sessions so that you can always tell which one you are talking to.
_Note:_ `set prompt' does not add a space for you after the prompt
you set. This allows you to set a prompt which ends in a space or a
prompt that does not.
`set prompt NEWPROMPT'
Directs GDB to use NEWPROMPT as its prompt string henceforth.
`show prompt'
Prints a line of the form: `Gdb's prompt is: YOUR-PROMPT'
File: gdb.info, Node: Editing, Next: History, Prev: Prompt, Up: Controlling GDB
19.2 Command editing
====================
GDB reads its input commands via the "Readline" interface. This GNU
library provides consistent behavior for programs which provide a
command line interface to the user. Advantages are GNU Emacs-style or
"vi"-style inline editing of commands, `csh'-like history substitution,
and a storage and recall of command history across debugging sessions.
You may control the behavior of command line editing in GDB with the
command `set'.
`set editing'
`set editing on'
Enable command line editing (enabled by default).
`set editing off'
Disable command line editing.
`show editing'
Show whether command line editing is enabled.
*Note Command Line Editing::, for more details about the Readline
interface. Users unfamiliar with GNU Emacs or `vi' are encouraged to
read that chapter.
File: gdb.info, Node: History, Next: Screen Size, Prev: Editing, Up: Controlling GDB
19.3 Command history
====================
GDB can keep track of the commands you type during your debugging
sessions, so that you can be certain of precisely what happened. Use
these commands to manage the GDB command history facility.
GDB uses the GNU History library, a part of the Readline package, to
provide the history facility. *Note Using History Interactively::, for
the detailed description of the History library.
Here is the description of GDB commands related to command history.
`set history filename FNAME'
Set the name of the GDB command history file to FNAME. This is
the file where GDB reads an initial command history list, and
where it writes the command history from this session when it
exits. You can access this list through history expansion or
through the history command editing characters listed below. This
file defaults to the value of the environment variable
`GDBHISTFILE', or to `./.gdb_history' (`./_gdb_history' on MS-DOS)
if this variable is not set.
`set history save'
`set history save on'
Record command history in a file, whose name may be specified with
the `set history filename' command. By default, this option is
disabled.
`set history save off'
Stop recording command history in a file.
`set history size SIZE'
Set the number of commands which GDB keeps in its history list.
This defaults to the value of the environment variable `HISTSIZE',
or to 256 if this variable is not set.
History expansion assigns special meaning to the character `!'.
*Note Event Designators::, for more details.
Since `!' is also the logical not operator in C, history expansion
is off by default. If you decide to enable history expansion with the
`set history expansion on' command, you may sometimes need to follow
`!' (when it is used as logical not, in an expression) with a space or
a tab to prevent it from being expanded. The readline history
facilities do not attempt substitution on the strings `!=' and `!(',
even when history expansion is enabled.
The commands to control history expansion are:
`set history expansion on'
`set history expansion'
Enable history expansion. History expansion is off by default.
`set history expansion off'
Disable history expansion.
`show history'
`show history filename'
`show history save'
`show history size'
`show history expansion'
These commands display the state of the GDB history parameters.
`show history' by itself displays all four states.
`show commands'
Display the last ten commands in the command history.
`show commands N'
Print ten commands centered on command number N.
`show commands +'
Print ten commands just after the commands last printed.
File: gdb.info, Node: Screen Size, Next: Numbers, Prev: History, Up: Controlling GDB
19.4 Screen size
================
Certain commands to GDB may produce large amounts of information output
to the screen. To help you read all of it, GDB pauses and asks you for
input at the end of each page of output. Type when you want to
continue the output, or `q' to discard the remaining output. Also, the
screen width setting determines when to wrap lines of output.
Depending on what is being printed, GDB tries to break the line at a
readable place, rather than simply letting it overflow onto the
following line.
Normally GDB knows the size of the screen from the terminal driver
software. For example, on Unix GDB uses the termcap data base together
with the value of the `TERM' environment variable and the `stty rows'
and `stty cols' settings. If this is not correct, you can override it
with the `set height' and `set width' commands:
`set height LPP'
`show height'
`set width CPL'
`show width'
These `set' commands specify a screen height of LPP lines and a
screen width of CPL characters. The associated `show' commands
display the current settings.
If you specify a height of zero lines, GDB does not pause during
output no matter how long the output is. This is useful if output
is to a file or to an editor buffer.
Likewise, you can specify `set width 0' to prevent GDB from
wrapping its output.
File: gdb.info, Node: Numbers, Next: ABI, Prev: Screen Size, Up: Controlling GDB
19.5 Numbers
============
You can always enter numbers in octal, decimal, or hexadecimal in GDB
by the usual conventions: octal numbers begin with `0', decimal numbers
end with `.', and hexadecimal numbers begin with `0x'. Numbers that
begin with none of these are, by default, entered in base 10; likewise,
the default display for numbers--when no particular format is
specified--is base 10. You can change the default base for both input
and output with the `set radix' command.
`set input-radix BASE'
Set the default base for numeric input. Supported choices for
BASE are decimal 8, 10, or 16. BASE must itself be specified
either unambiguously or using the current default radix; for
example, any of
set radix 012
set radix 10.
set radix 0xa
sets the base to decimal. On the other hand, `set radix 10'
leaves the radix unchanged no matter what it was.
`set output-radix BASE'
Set the default base for numeric display. Supported choices for
BASE are decimal 8, 10, or 16. BASE must itself be specified
either unambiguously or using the current default radix.
`show input-radix'
Display the current default base for numeric input.
`show output-radix'
Display the current default base for numeric display.
File: gdb.info, Node: ABI, Next: Messages/Warnings, Prev: Numbers, Up: Controlling GDB
19.6 Configuring the current ABI
================================
GDB can determine the "ABI" (Application Binary Interface) of your
application automatically. However, sometimes you need to override its
conclusions. Use these commands to manage GDB's view of the current
ABI.
One GDB configuration can debug binaries for multiple operating
system targets, either via remote debugging or native emulation. GDB
will autodetect the "OS ABI" (Operating System ABI) in use, but you can
override its conclusion using the `set osabi' command. One example
where this is useful is in debugging of binaries which use an alternate
C library (e.g. UCLIBC for GNU/Linux) which does not have the same
identifying marks that the standard C library for your platform
provides.
`show osabi'
Show the OS ABI currently in use.
`set osabi'
With no argument, show the list of registered available OS ABI's.
`set osabi ABI'
Set the current OS ABI to ABI.
Generally, the way that an argument of type `float' is passed to a
function depends on whether the function is prototyped. For a
prototyped (i.e. ANSI/ISO style) function, `float' arguments are passed
unchanged, according to the architecture's convention for `float'. For
unprototyped (i.e. K&R style) functions, `float' arguments are first
promoted to type `double' and then passed.
Unfortunately, some forms of debug information do not reliably
indicate whether a function is prototyped. If GDB calls a function
that is not marked as prototyped, it consults `set
coerce-float-to-double'.
`set coerce-float-to-double'
`set coerce-float-to-double on'
Arguments of type `float' will be promoted to `double' when passed
to an unprototyped function. This is the default setting.
`set coerce-float-to-double off'
Arguments of type `float' will be passed directly to unprototyped
functions.
GDB needs to know the ABI used for your program's C++ objects. The
correct C++ ABI depends on which C++ compiler was used to build your
application. GDB only fully supports programs with a single C++ ABI;
if your program contains code using multiple C++ ABI's or if GDB can
not identify your program's ABI correctly, you can tell GDB which ABI
to use. Currently supported ABI's include "gnu-v2", for `g++' versions
before 3.0, "gnu-v3", for `g++' versions 3.0 and later, and "hpaCC" for
the HP ANSI C++ compiler. Other C++ compilers may use the "gnu-v2" or
"gnu-v3" ABI's as well. The default setting is "auto".
`show cp-abi'
Show the C++ ABI currently in use.
`set cp-abi'
With no argument, show the list of supported C++ ABI's.
`set cp-abi ABI'
`set cp-abi auto'
Set the current C++ ABI to ABI, or return to automatic detection.
File: gdb.info, Node: Messages/Warnings, Next: Debugging Output, Prev: ABI, Up: Controlling GDB
19.7 Optional warnings and messages
===================================
By default, GDB is silent about its inner workings. If you are running
on a slow machine, you may want to use the `set verbose' command. This
makes GDB tell you when it does a lengthy internal operation, so you
will not think it has crashed.
Currently, the messages controlled by `set verbose' are those which
announce that the symbol table for a source file is being read; see
`symbol-file' in *Note Commands to specify files: Files.
`set verbose on'
Enables GDB output of certain informational messages.
`set verbose off'
Disables GDB output of certain informational messages.
`show verbose'
Displays whether `set verbose' is on or off.
By default, if GDB encounters bugs in the symbol table of an object
file, it is silent; but if you are debugging a compiler, you may find
this information useful (*note Errors reading symbol files: Symbol
Errors.).
`set complaints LIMIT'
Permits GDB to output LIMIT complaints about each type of unusual
symbols before becoming silent about the problem. Set LIMIT to
zero to suppress all complaints; set it to a large number to
prevent complaints from being suppressed.
`show complaints'
Displays how many symbol complaints GDB is permitted to produce.
By default, GDB is cautious, and asks what sometimes seems to be a
lot of stupid questions to confirm certain commands. For example, if
you try to run a program which is already running:
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n)
If you are willing to unflinchingly face the consequences of your own
commands, you can disable this "feature":
`set confirm off'
Disables confirmation requests.
`set confirm on'
Enables confirmation requests (the default).
`show confirm'
Displays state of confirmation requests.
File: gdb.info, Node: Debugging Output, Prev: Messages/Warnings, Up: Controlling GDB
19.8 Optional messages about internal happenings
================================================
`set debug arch'
Turns on or off display of gdbarch debugging info. The default is
off
`show debug arch'
Displays the current state of displaying gdbarch debugging info.
`set debug event'
Turns on or off display of GDB event debugging info. The default
is off.
`show debug event'
Displays the current state of displaying GDB event debugging info.
`set debug expression'
Turns on or off display of GDB expression debugging info. The
default is off.
`show debug expression'
Displays the current state of displaying GDB expression debugging
info.
`set debug frame'
Turns on or off display of GDB frame debugging info. The default
is off.
`show debug frame'
Displays the current state of displaying GDB frame debugging info.
`set debug observer'
Turns on or off display of GDB observer debugging. This includes
info such as the notification of observable events.
`show debug observer'
Displays the current state of observer debugging.
`set debug overload'
Turns on or off display of GDB C++ overload debugging info. This
includes info such as ranking of functions, etc. The default is
off.
`show debug overload'
Displays the current state of displaying GDB C++ overload
debugging info.
`set debug remote'
Turns on or off display of reports on all packets sent back and
forth across the serial line to the remote machine. The info is
printed on the GDB standard output stream. The default is off.
`show debug remote'
Displays the state of display of remote packets.
`set debug serial'
Turns on or off display of GDB serial debugging info. The default
is off.
`show debug serial'
Displays the current state of displaying GDB serial debugging info.
`set debug target'
Turns on or off display of GDB target debugging info. This info
includes what is going on at the target level of GDB, as it
happens. The default is 0. Set it to 1 to track events, and to 2
to also track the value of large memory transfers. Changes to
this flag do not take effect until the next time you connect to a
target or use the `run' command.
`show debug target'
Displays the current state of displaying GDB target debugging info.
`set debug varobj'
Turns on or off display of GDB variable object debugging info. The
default is off.
`show debug varobj'
Displays the current state of displaying GDB variable object
debugging info.
File: gdb.info, Node: Sequences, Next: TUI, Prev: Controlling GDB, Up: Top
20 Canned Sequences of Commands
*******************************
Aside from breakpoint commands (*note Breakpoint command lists: Break
Commands.), GDB provides two ways to store sequences of commands for
execution as a unit: user-defined commands and command files.
* Menu:
* Define:: User-defined commands
* Hooks:: User-defined command hooks
* Command Files:: Command files
* Output:: Commands for controlled output
File: gdb.info, Node: Define, Next: Hooks, Up: Sequences
20.1 User-defined commands
==========================
A "user-defined command" is a sequence of GDB commands to which you
assign a new name as a command. This is done with the `define'
command. User commands may accept up to 10 arguments separated by
whitespace. Arguments are accessed within the user command via
$ARG0...$ARG9. A trivial example:
define adder
print $arg0 + $arg1 + $arg2
To execute the command use:
adder 1 2 3
This defines the command `adder', which prints the sum of its three
arguments. Note the arguments are text substitutions, so they may
reference variables, use complex expressions, or even perform inferior
functions calls.
`define COMMANDNAME'
Define a command named COMMANDNAME. If there is already a command
by that name, you are asked to confirm that you want to redefine
it.
The definition of the command is made up of other GDB command
lines, which are given following the `define' command. The end of
these commands is marked by a line containing `end'.
`if'
Takes a single argument, which is an expression to evaluate. It
is followed by a series of commands that are executed only if the
expression is true (nonzero). There can then optionally be a line
`else', followed by a series of commands that are only executed if
the expression was false. The end of the list is marked by a line
containing `end'.
`while'
The syntax is similar to `if': the command takes a single argument,
which is an expression to evaluate, and must be followed by the
commands to execute, one per line, terminated by an `end'. The
commands are executed repeatedly as long as the expression
evaluates to true.
`document COMMANDNAME'
Document the user-defined command COMMANDNAME, so that it can be
accessed by `help'. The command COMMANDNAME must already be
defined. This command reads lines of documentation just as
`define' reads the lines of the command definition, ending with
`end'. After the `document' command is finished, `help' on command
COMMANDNAME displays the documentation you have written.
You may use the `document' command again to change the
documentation of a command. Redefining the command with `define'
does not change the documentation.
`help user-defined'
List all user-defined commands, with the first line of the
documentation (if any) for each.
`show user'
`show user COMMANDNAME'
Display the GDB commands used to define COMMANDNAME (but not its
documentation). If no COMMANDNAME is given, display the
definitions for all user-defined commands.
`show max-user-call-depth'
`set max-user-call-depth'
The value of `max-user-call-depth' controls how many recursion
levels are allowed in user-defined commands before GDB suspects an
infinite recursion and aborts the command.
When user-defined commands are executed, the commands of the
definition are not printed. An error in any command stops execution of
the user-defined command.
If used interactively, commands that would ask for confirmation
proceed without asking when used inside a user-defined command. Many
GDB commands that normally print messages to say what they are doing
omit the messages when used in a user-defined command.
File: gdb.info, Node: Hooks, Next: Command Files, Prev: Define, Up: Sequences
20.2 User-defined command hooks
===============================
You may define "hooks", which are a special kind of user-defined
command. Whenever you run the command `foo', if the user-defined
command `hook-foo' exists, it is executed (with no arguments) before
that command.
A hook may also be defined which is run after the command you
executed. Whenever you run the command `foo', if the user-defined
command `hookpost-foo' exists, it is executed (with no arguments) after
that command. Post-execution hooks may exist simultaneously with
pre-execution hooks, for the same command.
It is valid for a hook to call the command which it hooks. If this
occurs, the hook is not re-executed, thereby avoiding infinte recursion.
In addition, a pseudo-command, `stop' exists. Defining
(`hook-stop') makes the associated commands execute every time
execution stops in your program: before breakpoint commands are run,
displays are printed, or the stack frame is printed.
For example, to ignore `SIGALRM' signals while single-stepping, but
treat them normally during normal execution, you could define:
define hook-stop
handle SIGALRM nopass
end
define hook-run
handle SIGALRM pass
end
define hook-continue
handle SIGLARM pass
end
As a further example, to hook at the begining and end of the `echo'
command, and to add extra text to the beginning and end of the message,
you could define:
define hook-echo
echo <<<---
end
define hookpost-echo
echo --->>>\n
end
(gdb) echo Hello World
<<<---Hello World--->>>
(gdb)
You can define a hook for any single-word command in GDB, but not
for command aliases; you should define a hook for the basic command
name, e.g. `backtrace' rather than `bt'. If an error occurs during
the execution of your hook, execution of GDB commands stops and GDB
issues a prompt (before the command that you actually typed had a
chance to run).
If you try to define a hook which does not match any known command,
you get a warning from the `define' command.
File: gdb.info, Node: Command Files, Next: Output, Prev: Hooks, Up: Sequences
20.3 Command files
==================
A command file for GDB is a file of lines that are GDB commands.
Comments (lines starting with `#') may also be included. An empty line
in a command file does nothing; it does not mean to repeat the last
command, as it would from the terminal.
When you start GDB, it automatically executes commands from its
"init files", normally called `.gdbinit'(1). During startup, GDB does
the following:
1. Reads the init file (if any) in your home directory(2).
2. Processes command line options and operands.
3. Reads the init file (if any) in the current working directory.
4. Reads command files specified by the `-x' option.
The init file in your home directory can set options (such as `set
complaints') that affect subsequent processing of command line options
and operands. Init files are not executed if you use the `-nx' option
(*note Choosing modes: Mode Options.).
On some configurations of GDB, the init file is known by a different
name (these are typically environments where a specialized form of GDB
may need to coexist with other forms, hence a different name for the
specialized version's init file). These are the environments with
special init file names:
* VxWorks (Wind River Systems real-time OS): `.vxgdbinit'
* OS68K (Enea Data Systems real-time OS): `.os68gdbinit'
* ES-1800 (Ericsson Telecom AB M68000 emulator): `.esgdbinit'
You can also request the execution of a command file with the
`source' command:
`source FILENAME'
Execute the command file FILENAME.
The lines in a command file are executed sequentially. They are not
printed as they are executed. An error in any command terminates
execution of the command file and control is returned to the console.
Commands that would ask for confirmation if used interactively
proceed without asking when used in a command file. Many GDB commands
that normally print messages to say what they are doing omit the
messages when called from command files.
GDB also accepts command input from standard input. In this mode,
normal output goes to standard output and error output goes to standard
error. Errors in a command file supplied on standard input do not
terminate execution of the command file -- execution continues with the
next command.
gdb < cmds > log 2>&1
(The syntax above will vary depending on the shell used.) This
example will execute commands from the file `cmds'. All output and
errors would be directed to `log'.
---------- Footnotes ----------
(1) The DJGPP port of GDB uses the name `gdb.ini' instead, due to the
limitations of file names imposed by DOS filesystems.
(2) On DOS/Windows systems, the home directory is the one pointed to
by the `HOME' environment variable.
File: gdb.info, Node: Output, Prev: Command Files, Up: Sequences
20.4 Commands for controlled output
===================================
During the execution of a command file or a user-defined command, normal
GDB output is suppressed; the only output that appears is what is
explicitly printed by the commands in the definition. This section
describes three commands useful for generating exactly the output you
want.
`echo TEXT'
Print TEXT. Nonprinting characters can be included in TEXT using
C escape sequences, such as `\n' to print a newline. *No newline
is printed unless you specify one.* In addition to the standard C
escape sequences, a backslash followed by a space stands for a
space. This is useful for displaying a string with spaces at the
beginning or the end, since leading and trailing spaces are
otherwise trimmed from all arguments. To print ` and foo = ', use
the command `echo \ and foo = \ '.
A backslash at the end of TEXT can be used, as in C, to continue
the command onto subsequent lines. For example,
echo This is some text\n\
which is continued\n\
onto several lines.\n
produces the same output as
echo This is some text\n
echo which is continued\n
echo onto several lines.\n
`output EXPRESSION'
Print the value of EXPRESSION and nothing but that value: no
newlines, no `$NN = '. The value is not entered in the value
history either. *Note Expressions: Expressions, for more
information on expressions.
`output/FMT EXPRESSION'
Print the value of EXPRESSION in format FMT. You can use the same
formats as for `print'. *Note Output formats: Output Formats, for
more information.
`printf STRING, EXPRESSIONS...'
Print the values of the EXPRESSIONS under the control of STRING.
The EXPRESSIONS are separated by commas and may be either numbers
or pointers. Their values are printed as specified by STRING,
exactly as if your program were to execute the C subroutine
printf (STRING, EXPRESSIONS...);
For example, you can print two values in hex like this:
printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
The only backslash-escape sequences that you can use in the format
string are the simple ones that consist of backslash followed by a
letter.
File: gdb.info, Node: TUI, Next: Interpreters, Prev: Sequences, Up: Top
22 GDB Text User Interface
**************************
* Menu:
* TUI Overview:: TUI overview
* TUI Keys:: TUI key bindings
* TUI Single Key Mode:: TUI single key mode
* TUI Commands:: TUI specific commands
* TUI Configuration:: TUI configuration variables
The GDB Text User Interface, TUI in short, is a terminal interface
which uses the `curses' library to show the source file, the assembly
output, the program registers and GDB commands in separate text windows.
The TUI is enabled by invoking GDB using either `gdbtui' or `gdb
-tui'.
File: gdb.info, Node: TUI Overview, Next: TUI Keys, Up: TUI
22.1 TUI overview
=================
The TUI has two display modes that can be switched while GDB runs:
* A curses (or TUI) mode in which it displays several text windows
on the terminal.
* A standard mode which corresponds to the GDB configured without
the TUI.
In the TUI mode, GDB can display several text window on the terminal:
_command_
This window is the GDB command window with the GDB prompt and the
GDB outputs. The GDB input is still managed using readline but
through the TUI. The _command_ window is always visible.
_source_
The source window shows the source file of the program. The
current line as well as active breakpoints are displayed in this
window.
_assembly_
The assembly window shows the disassembly output of the program.
_register_
This window shows the processor registers. It detects when a
register is changed and when this is the case, registers that have
changed are highlighted.
The source and assembly windows show the current program position by
highlighting the current line and marking them with the `>' marker.
Breakpoints are also indicated with two markers. A first one indicates
the breakpoint type:
`B'
Breakpoint which was hit at least once.
`b'
Breakpoint which was never hit.
`H'
Hardware breakpoint which was hit at least once.
`h'
Hardware breakpoint which was never hit.
The second marker indicates whether the breakpoint is enabled or not:
`+'
Breakpoint is enabled.
`-'
Breakpoint is disabled.
The source, assembly and register windows are attached to the thread
and the frame position. They are updated when the current thread
changes, when the frame changes or when the program counter changes.
These three windows are arranged by the TUI according to several
layouts. The layout defines which of these three windows are visible.
The following layouts are available:
* source
* assembly
* source and assembly
* source and registers
* assembly and registers
On top of the command window a status line gives various information
concerning the current process begin debugged. The status line is
updated when the information it shows changes. The following fields
are displayed:
_target_
Indicates the current gdb target (*note Specifying a Debugging
Target: Targets.).
_process_
Gives information about the current process or thread number.
When no process is being debugged, this field is set to `No
process'.
_function_
Gives the current function name for the selected frame. The name
is demangled if demangling is turned on (*note Print Settings::).
When there is no symbol corresponding to the current program
counter the string `??' is displayed.
_line_
Indicates the current line number for the selected frame. When
the current line number is not known the string `??' is displayed.
_pc_
Indicates the current program counter address.
File: gdb.info, Node: TUI Keys, Next: TUI Single Key Mode, Prev: TUI Overview, Up: TUI
22.2 TUI Key Bindings
=====================
The TUI installs several key bindings in the readline keymaps (*note
Command Line Editing::). They allow to leave or enter in the TUI mode
or they operate directly on the TUI layout and windows. The TUI also
provides a _SingleKey_ keymap which binds several keys directly to GDB
commands. The following key bindings are installed for both TUI mode
and the GDB standard mode.
`C-x C-a'
`C-x a'
`C-x A'
Enter or leave the TUI mode. When the TUI mode is left, the
curses window management is left and GDB operates using its
standard mode writing on the terminal directly. When the TUI mode
is entered, the control is given back to the curses windows. The
screen is then refreshed.
`C-x 1'
Use a TUI layout with only one window. The layout will either be
`source' or `assembly'. When the TUI mode is not active, it will
switch to the TUI mode.
Think of this key binding as the Emacs `C-x 1' binding.
`C-x 2'
Use a TUI layout with at least two windows. When the current
layout shows already two windows, a next layout with two windows
is used. When a new layout is chosen, one window will always be
common to the previous layout and the new one.
Think of it as the Emacs `C-x 2' binding.
`C-x o'
Change the active window. The TUI associates several key bindings
(like scrolling and arrow keys) to the active window. This command
gives the focus to the next TUI window.
Think of it as the Emacs `C-x o' binding.
`C-x s'
Use the TUI _SingleKey_ keymap that binds single key to gdb
commands (*note TUI Single Key Mode::).
The following key bindings are handled only by the TUI mode:
Scroll the active window one page up.
Scroll the active window one page down.
Scroll the active window one line up.
Scroll the active window one line down.
Scroll the active window one column left.
Scroll the active window one column right.
Refresh the screen.
In the TUI mode, the arrow keys are used by the active window for
scrolling. This means they are available for readline when the active
window is the command window. When the command window does not have
the focus, it is necessary to use other readline key bindings such as
, , and .
File: gdb.info, Node: TUI Single Key Mode, Next: TUI Commands, Prev: TUI Keys, Up: TUI
22.3 TUI Single Key Mode
========================
The TUI provides a _SingleKey_ mode in which it installs a particular
key binding in the readline keymaps to connect single keys to some gdb
commands.
`c'
continue
`d'
down
`f'
finish
`n'
next
`q'
exit the _SingleKey_ mode.
`r'
run
`s'
step
`u'
up
`v'
info locals
`w'
where
Other keys temporarily switch to the GDB command prompt. The key
that was pressed is inserted in the editing buffer so that it is
possible to type most GDB commands without interaction with the TUI
_SingleKey_ mode. Once the command is entered the TUI _SingleKey_ mode
is restored. The only way to permanently leave this mode is by hitting
or ` '.
File: gdb.info, Node: TUI Commands, Next: TUI Configuration, Prev: TUI Single Key Mode, Up: TUI
22.4 TUI specific commands
==========================
The TUI has specific commands to control the text windows. These
commands are always available, that is they do not depend on the
current terminal mode in which GDB runs. When GDB is in the standard
mode, using these commands will automatically switch in the TUI mode.
`info win'
List and give the size of all displayed windows.
`layout next'
Display the next layout.
`layout prev'
Display the previous layout.
`layout src'
Display the source window only.
`layout asm'
Display the assembly window only.
`layout split'
Display the source and assembly window.
`layout regs'
Display the register window together with the source or assembly
window.
`focus next | prev | src | asm | regs | split'
Set the focus to the named window. This command allows to change
the active window so that scrolling keys can be affected to
another window.
`refresh'
Refresh the screen. This is similar to using key.
`tui reg float'
Show the floating point registers in the register window.
`tui reg general'
Show the general registers in the register window.
`tui reg next'
Show the next register group. The list of register groups as well
as their order is target specific. The predefined register groups
are the following: `general', `float', `system', `vector', `all',
`save', `restore'.
`tui reg system'
Show the system registers in the register window.
`update'
Update the source window and the current execution point.
`winheight NAME +COUNT'
`winheight NAME -COUNT'
Change the height of the window NAME by COUNT lines. Positive
counts increase the height, while negative counts decrease it.
File: gdb.info, Node: TUI Configuration, Prev: TUI Commands, Up: TUI
22.5 TUI configuration variables
================================
The TUI has several configuration variables that control the appearance
of windows on the terminal.
`set tui border-kind KIND'
Select the border appearance for the source, assembly and register
windows. The possible values are the following:
`space'
Use a space character to draw the border.
`ascii'
Use ascii characters + - and | to draw the border.
`acs'
Use the Alternate Character Set to draw the border. The
border is drawn using character line graphics if the terminal
supports them.
`set tui active-border-mode MODE'
Select the attributes to display the border of the active window.
The possible values are `normal', `standout', `reverse', `half',
`half-standout', `bold' and `bold-standout'.
`set tui border-mode MODE'
Select the attributes to display the border of other windows. The
MODE can be one of the following:
`normal'
Use normal attributes to display the border.
`standout'
Use standout mode.
`reverse'
Use reverse video mode.
`half'
Use half bright mode.
`half-standout'
Use half bright and standout mode.
`bold'
Use extra bright or bold mode.
`bold-standout'
Use extra bright or bold and standout mode.
File: gdb.info, Node: Interpreters, Next: Emacs, Prev: TUI, Up: Top
21 Command Interpreters
***********************
GDB supports multiple command interpreters, and some command
infrastructure to allow users or user interface writers to switch
between interpreters or run commands in other interpreters.
GDB currently supports two command interpreters, the console
interpreter (sometimes called the command-line interpreter or CLI) and
the machine interface interpreter (or GDB/MI). This manual describes
both of these interfaces in great detail.
By default, GDB will start with the console interpreter. However,
the user may choose to start GDB with another interpreter by specifying
the `-i' or `--interpreter' startup options. Defined interpreters
include:
`console'
The traditional console or command-line interpreter. This is the
most often used interpreter with GDB. With no interpreter
specified at runtime, GDB will use this interpreter.
`mi'
The newest GDB/MI interface (currently `mi2'). Used primarily by
programs wishing to use GDB as a backend for a debugger GUI or an
IDE. For more information, see *Note The GDB/MI Interface: GDB/MI.
`mi2'
The current GDB/MI interface.
`mi1'
The GDB/MI interface included in GDB 5.1, 5.2, and 5.3.
The interpreter being used by GDB may not be dynamically switched at
runtime. Although possible, this could lead to a very precarious
situation. Consider an IDE using GDB/MI. If a user enters the command
"interpreter-set console" in a console view, GDB would switch to using
the console interpreter, rendering the IDE inoperable!
Although you may only choose a single interpreter at startup, you
may execute commands in any interpreter from the current interpreter
using the appropriate command. If you are running the console
interpreter, simply use the `interpreter-exec' command:
interpreter-exec mi "-data-list-register-names"
GDB/MI has a similar command, although it is only available in
versions of GDB which support GDB/MI version 2 (or greater).
File: gdb.info, Node: Emacs, Next: Annotations, Prev: Interpreters, Up: Top
23 Using GDB under GNU Emacs
****************************
A special interface allows you to use GNU Emacs to view (and edit) the
source files for the program you are debugging with GDB.
To use this interface, use the command `M-x gdb' in Emacs. Give the
executable file you want to debug as an argument. This command starts
GDB as a subprocess of Emacs, with input and output through a newly
created Emacs buffer.
Using GDB under Emacs is just like using GDB normally except for two
things:
* All "terminal" input and output goes through the Emacs buffer.
This applies both to GDB commands and their output, and to the input
and output done by the program you are debugging.
This is useful because it means that you can copy the text of
previous commands and input them again; you can even use parts of the
output in this way.
All the facilities of Emacs' Shell mode are available for interacting
with your program. In particular, you can send signals the usual
way--for example, `C-c C-c' for an interrupt, `C-c C-z' for a stop.
* GDB displays source code through Emacs.
Each time GDB displays a stack frame, Emacs automatically finds the
source file for that frame and puts an arrow (`=>') at the left margin
of the current line. Emacs uses a separate buffer for source display,
and splits the screen to show both your GDB session and the source.
Explicit GDB `list' or search commands still produce output as
usual, but you probably have no reason to use them from Emacs.
If you specify an absolute file name when prompted for the `M-x gdb'
argument, then Emacs sets your current working directory to where your
program resides. If you only specify the file name, then Emacs sets
your current working directory to to the directory associated with the
previous buffer. In this case, GDB may find your program by searching
your environment's `PATH' variable, but on some operating systems it
might not find the source. So, although the GDB input and output
session proceeds normally, the auxiliary buffer does not display the
current source and line of execution.
The initial working directory of GDB is printed on the top line of
the GDB I/O buffer and this serves as a default for the commands that
specify files for GDB to operate on. *Note Commands to specify files:
Files.
By default, `M-x gdb' calls the program called `gdb'. If you need
to call GDB by a different name (for example, if you keep several
configurations around, with different names) you can customize the
Emacs variable `gud-gdb-command-name' to run the one you want.
In the GDB I/O buffer, you can use these special Emacs commands in
addition to the standard Shell mode commands:
`C-h m'
Describe the features of Emacs' GDB Mode.
`C-c C-s'
Execute to another source line, like the GDB `step' command; also
update the display window to show the current file and location.
`C-c C-n'
Execute to next source line in this function, skipping all function
calls, like the GDB `next' command. Then update the display window
to show the current file and location.
`C-c C-i'
Execute one instruction, like the GDB `stepi' command; update
display window accordingly.
`C-c C-f'
Execute until exit from the selected stack frame, like the GDB
`finish' command.
`C-c C-r'
Continue execution of your program, like the GDB `continue'
command.
`C-c <'
Go up the number of frames indicated by the numeric argument
(*note Numeric Arguments: (Emacs)Arguments.), like the GDB `up'
command.
`C-c >'
Go down the number of frames indicated by the numeric argument,
like the GDB `down' command.
In any source file, the Emacs command `C-x SPC' (`gud-break') tells
GDB to set a breakpoint on the source line point is on.
If you type `M-x speedbar', then Emacs displays a separate frame
which shows a backtrace when the GDB I/O buffer is current. Move point
to any frame in the stack and type to make it become the current
frame and display the associated source in the source buffer.
Alternatively, click `Mouse-2' to make the selected frame become the
current one.
If you accidentally delete the source-display buffer, an easy way to
get it back is to type the command `f' in the GDB buffer, to request a
frame display; when you run under Emacs, this recreates the source
buffer if necessary to show you the context of the current frame.
The source files displayed in Emacs are in ordinary Emacs buffers
which are visiting the source files in the usual way. You can edit the
files with these buffers if you wish; but keep in mind that GDB
communicates with Emacs in terms of line numbers. If you add or delete
lines from the text, the line numbers that GDB knows cease to
correspond properly with the code.
The description given here is for GNU Emacs version 21.3 and a more
detailed description of its interaction with GDB is given in the Emacs
manual (*note Debuggers: (Emacs)Debuggers.).
File: gdb.info, Node: Annotations, Next: GDB/MI, Prev: Emacs, Up: Top
25 GDB Annotations
******************
This chapter describes annotations in GDB. Annotations were designed
to interface GDB to graphical user interfaces or other similar programs
which want to interact with GDB at a relatively high level.
The annotation mechanism has largely been superseeded by GDB/MI
(*note GDB/MI::).
* Menu:
* Annotations Overview:: What annotations are; the general syntax.
* Server Prefix:: Issuing a command without affecting user state.
* Prompting:: Annotations marking GDB's need for input.
* Errors:: Annotations for error messages.
* Invalidation:: Some annotations describe things now invalid.
* Annotations for Running::
Whether the program is running, how it stopped, etc.
* Source Annotations:: Annotations describing source code.
File: gdb.info, Node: Annotations Overview, Next: Server Prefix, Up: Annotations
25.1 What is an Annotation?
===========================
Annotations start with a newline character, two `control-z' characters,
and the name of the annotation. If there is no additional information
associated with this annotation, the name of the annotation is followed
immediately by a newline. If there is additional information, the name
of the annotation is followed by a space, the additional information,
and a newline. The additional information cannot contain newline
characters.
Any output not beginning with a newline and two `control-z'
characters denotes literal output from GDB. Currently there is no need
for GDB to output a newline followed by two `control-z' characters, but
if there was such a need, the annotations could be extended with an
`escape' annotation which means those three characters as output.
The annotation LEVEL, which is specified using the `--annotate'
command line option (*note Mode Options::), controls how much
information GDB prints together with its prompt, values of expressions,
source lines, and other types of output. Level 0 is for no anntations,
level 1 is for use when GDB is run as a subprocess of GNU Emacs, level
3 is the maximum annotation suitable for programs that control GDB, and
level 2 annotations have been made obsolete (*note Limitations of the
Annotation Interface: (annotate)Limitations.). This chapter describes
level 3 annotations.
A simple example of starting up GDB with annotations is:
$ gdb --annotate=3
GNU gdb 6.0
Copyright 2003 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it
under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty"
for details.
This GDB was configured as "i386-pc-linux-gnu"
^Z^Zpre-prompt
(gdb)
^Z^Zprompt
quit
^Z^Zpost-prompt
$
Here `quit' is input to GDB; the rest is output from GDB. The three
lines beginning `^Z^Z' (where `^Z' denotes a `control-z' character) are
annotations; the rest is output from GDB.
File: gdb.info, Node: Server Prefix, Next: Prompting, Prev: Annotations Overview, Up: Annotations
25.2 The Server Prefix
======================
To issue a command to GDB without affecting certain aspects of the
state which is seen by users, prefix it with `server '. This means
that this command will not affect the command history, nor will it
affect GDB's notion of which command to repeat if is pressed on a
line by itself.
The server prefix does not affect the recording of values into the
value history; to print a value without recording it into the value
history, use the `output' command instead of the `print' command.
File: gdb.info, Node: Prompting, Next: Errors, Prev: Server Prefix, Up: Annotations
25.3 Annotation for GDB Input
=============================
When GDB prompts for input, it annotates this fact so it is possible to
know when to send output, when the output from a given command is over,
etc.
Different kinds of input each have a different "input type". Each
input type has three annotations: a `pre-' annotation, which denotes
the beginning of any prompt which is being output, a plain annotation,
which denotes the end of the prompt, and then a `post-' annotation
which denotes the end of any echo which may (or may not) be associated
with the input. For example, the `prompt' input type features the
following annotations:
^Z^Zpre-prompt
^Z^Zprompt
^Z^Zpost-prompt
The input types are
`prompt'
When GDB is prompting for a command (the main GDB prompt).
`commands'
When GDB prompts for a set of commands, like in the `commands'
command. The annotations are repeated for each command which is
input.
`overload-choice'
When GDB wants the user to select between various overloaded
functions.
`query'
When GDB wants the user to confirm a potentially dangerous
operation.
`prompt-for-continue'
When GDB is asking the user to press return to continue. Note:
Don't expect this to work well; instead use `set height 0' to
disable prompting. This is because the counting of lines is buggy
in the presence of annotations.
File: gdb.info, Node: Errors, Next: Invalidation, Prev: Prompting, Up: Annotations
25.4 Errors
===========
^Z^Zquit
This annotation occurs right before GDB responds to an interrupt.
^Z^Zerror
This annotation occurs right before GDB responds to an error.
Quit and error annotations indicate that any annotations which GDB
was in the middle of may end abruptly. For example, if a
`value-history-begin' annotation is followed by a `error', one cannot
expect to receive the matching `value-history-end'. One cannot expect
not to receive it either, however; an error annotation does not
necessarily mean that GDB is immediately returning all the way to the
top level.
A quit or error annotation may be preceded by
^Z^Zerror-begin
Any output between that and the quit or error annotation is the error
message.
Warning messages are not yet annotated.
File: gdb.info, Node: Invalidation, Next: Annotations for Running, Prev: Errors, Up: Annotations
25.5 Invalidation Notices
=========================
The following annotations say that certain pieces of state may have
changed.
`^Z^Zframes-invalid'
The frames (for example, output from the `backtrace' command) may
have changed.
`^Z^Zbreakpoints-invalid'
The breakpoints may have changed. For example, the user just
added or deleted a breakpoint.
File: gdb.info, Node: Annotations for Running, Next: Source Annotations, Prev: Invalidation, Up: Annotations
25.6 Running the Program
========================
When the program starts executing due to a GDB command such as `step'
or `continue',
^Z^Zstarting
is output. When the program stops,
^Z^Zstopped
is output. Before the `stopped' annotation, a variety of
annotations describe how the program stopped.
`^Z^Zexited EXIT-STATUS'
The program exited, and EXIT-STATUS is the exit status (zero for
successful exit, otherwise nonzero).
`^Z^Zsignalled'
The program exited with a signal. After the `^Z^Zsignalled', the
annotation continues:
INTRO-TEXT
^Z^Zsignal-name
NAME
^Z^Zsignal-name-end
MIDDLE-TEXT
^Z^Zsignal-string
STRING
^Z^Zsignal-string-end
END-TEXT
where NAME is the name of the signal, such as `SIGILL' or
`SIGSEGV', and STRING is the explanation of the signal, such as
`Illegal Instruction' or `Segmentation fault'. INTRO-TEXT,
MIDDLE-TEXT, and END-TEXT are for the user's benefit and have no
particular format.
`^Z^Zsignal'
The syntax of this annotation is just like `signalled', but GDB is
just saying that the program received the signal, not that it was
terminated with it.
`^Z^Zbreakpoint NUMBER'
The program hit breakpoint number NUMBER.
`^Z^Zwatchpoint NUMBER'
The program hit watchpoint number NUMBER.
File: gdb.info, Node: Source Annotations, Prev: Annotations for Running, Up: Annotations
25.7 Displaying Source
======================
The following annotation is used instead of displaying source code:
^Z^Zsource FILENAME:LINE:CHARACTER:MIDDLE:ADDR
where FILENAME is an absolute file name indicating which source
file, LINE is the line number within that file (where 1 is the first
line in the file), CHARACTER is the character position within the file
(where 0 is the first character in the file) (for most debug formats
this will necessarily point to the beginning of a line), MIDDLE is
`middle' if ADDR is in the middle of the line, or `beg' if ADDR is at
the beginning of the line, and ADDR is the address in the target
program associated with the source which is being displayed. ADDR is
in the form `0x' followed by one or more lowercase hex digits (note
that this does not depend on the language).
File: gdb.info, Node: GDB/MI, Next: GDB Bugs, Prev: Annotations, Up: Top
24 The GDB/MI Interface
***********************
Function and Purpose
====================
GDB/MI is a line based machine oriented text interface to GDB. It is
specifically intended to support the development of systems which use
the debugger as just one small component of a larger system.
This chapter is a specification of the GDB/MI interface. It is
written in the form of a reference manual.
Note that GDB/MI is still under construction, so some of the
features described below are incomplete and subject to change.
Notation and Terminology
========================
This chapter uses the following notation:
* `|' separates two alternatives.
* `[ SOMETHING ]' indicates that SOMETHING is optional: it may or
may not be given.
* `( GROUP )*' means that GROUP inside the parentheses may repeat
zero or more times.
* `( GROUP )+' means that GROUP inside the parentheses may repeat
one or more times.
* `"STRING"' means a literal STRING.
Acknowledgments
===============
In alphabetic order: Andrew Cagney, Fernando Nasser, Stan Shebs and
Elena Zannoni.
* Menu:
* GDB/MI Command Syntax::
* GDB/MI Compatibility with CLI::
* GDB/MI Output Records::
* GDB/MI Command Description Format::
* GDB/MI Breakpoint Table Commands::
* GDB/MI Data Manipulation::
* GDB/MI Program Control::
* GDB/MI Miscellaneous Commands::
* GDB/MI Stack Manipulation::
* GDB/MI Symbol Query::
* GDB/MI Target Manipulation::
* GDB/MI Thread Commands::
* GDB/MI Tracepoint Commands::
* GDB/MI Variable Objects::
File: gdb.info, Node: GDB/MI Command Syntax, Next: GDB/MI Compatibility with CLI, Up: GDB/MI
24.1 GDB/MI Command Syntax
==========================
* Menu:
* GDB/MI Input Syntax::
* GDB/MI Output Syntax::
* GDB/MI Simple Examples::
File: gdb.info, Node: GDB/MI Input Syntax, Next: GDB/MI Output Syntax, Up: GDB/MI Command Syntax
24.1.1 GDB/MI Input Syntax
--------------------------
`COMMAND ==>'
`CLI-COMMAND | MI-COMMAND'
`CLI-COMMAND ==>'
`[ TOKEN ] CLI-COMMAND NL', where CLI-COMMAND is any existing GDB
CLI command.
`MI-COMMAND ==>'
`[ TOKEN ] "-" OPERATION ( " " OPTION )* `[' " --" `]' ( " "
PARAMETER )* NL'
`TOKEN ==>'
"any sequence of digits"
`OPTION ==>'
`"-" PARAMETER [ " " PARAMETER ]'
`PARAMETER ==>'
`NON-BLANK-SEQUENCE | C-STRING'
`OPERATION ==>'
_any of the operations described in this chapter_
`NON-BLANK-SEQUENCE ==>'
_anything, provided it doesn't contain special characters such as
"-", NL, """ and of course " "_
`C-STRING ==>'
`""" SEVEN-BIT-ISO-C-STRING-CONTENT """'
`NL ==>'
`CR | CR-LF'
Notes:
* The CLI commands are still handled by the MI interpreter; their
output is described below.
* The `TOKEN', when present, is passed back when the command
finishes.
* Some MI commands accept optional arguments as part of the parameter
list. Each option is identified by a leading `-' (dash) and may be
followed by an optional argument parameter. Options occur first
in the parameter list and can be delimited from normal parameters
using `--' (this is useful when some parameters begin with a dash).
Pragmatics:
* We want easy access to the existing CLI syntax (for debugging).
* We want it to be easy to spot a MI operation.
File: gdb.info, Node: GDB/MI Output Syntax, Next: GDB/MI Simple Examples, Prev: GDB/MI Input Syntax, Up: GDB/MI Command Syntax
24.1.2 GDB/MI Output Syntax
---------------------------
The output from GDB/MI consists of zero or more out-of-band records
followed, optionally, by a single result record. This result record is
for the most recent command. The sequence of output records is
terminated by `(gdb)'.
If an input command was prefixed with a `TOKEN' then the
corresponding output for that command will also be prefixed by that same
TOKEN.
`OUTPUT ==>'
`( OUT-OF-BAND-RECORD )* [ RESULT-RECORD ] "(gdb)" NL'
`RESULT-RECORD ==>'
` [ TOKEN ] "^" RESULT-CLASS ( "," RESULT )* NL'
`OUT-OF-BAND-RECORD ==>'
`ASYNC-RECORD | STREAM-RECORD'
`ASYNC-RECORD ==>'
`EXEC-ASYNC-OUTPUT | STATUS-ASYNC-OUTPUT | NOTIFY-ASYNC-OUTPUT'
`EXEC-ASYNC-OUTPUT ==>'
`[ TOKEN ] "*" ASYNC-OUTPUT'
`STATUS-ASYNC-OUTPUT ==>'
`[ TOKEN ] "+" ASYNC-OUTPUT'
`NOTIFY-ASYNC-OUTPUT ==>'
`[ TOKEN ] "=" ASYNC-OUTPUT'
`ASYNC-OUTPUT ==>'
`ASYNC-CLASS ( "," RESULT )* NL'
`RESULT-CLASS ==>'
`"done" | "running" | "connected" | "error" | "exit"'
`ASYNC-CLASS ==>'
`"stopped" | OTHERS' (where OTHERS will be added depending on the
needs--this is still in development).
`RESULT ==>'
` VARIABLE "=" VALUE'
`VARIABLE ==>'
` STRING '
`VALUE ==>'
` CONST | TUPLE | LIST '
`CONST ==>'
`C-STRING'
`TUPLE ==>'
` "{}" | "{" RESULT ( "," RESULT )* "}" '
`LIST ==>'
` "[]" | "[" VALUE ( "," VALUE )* "]" | "[" RESULT ( "," RESULT )*
"]" '
`STREAM-RECORD ==>'
`CONSOLE-STREAM-OUTPUT | TARGET-STREAM-OUTPUT | LOG-STREAM-OUTPUT'
`CONSOLE-STREAM-OUTPUT ==>'
`"~" C-STRING'
`TARGET-STREAM-OUTPUT ==>'
`"@" C-STRING'
`LOG-STREAM-OUTPUT ==>'
`"&" C-STRING'
`NL ==>'
`CR | CR-LF'
`TOKEN ==>'
_any sequence of digits_.
Notes:
* All output sequences end in a single line containing a period.
* The `TOKEN' is from the corresponding request. If an execution
command is interrupted by the `-exec-interrupt' command, the TOKEN
associated with the `*stopped' message is the one of the original
execution command, not the one of the interrupt command.
* STATUS-ASYNC-OUTPUT contains on-going status information about the
progress of a slow operation. It can be discarded. All status
output is prefixed by `+'.
* EXEC-ASYNC-OUTPUT contains asynchronous state change on the target
(stopped, started, disappeared). All async output is prefixed by
`*'.
* NOTIFY-ASYNC-OUTPUT contains supplementary information that the
client should handle (e.g., a new breakpoint information). All
notify output is prefixed by `='.
* CONSOLE-STREAM-OUTPUT is output that should be displayed as is in
the console. It is the textual response to a CLI command. All
the console output is prefixed by `~'.
* TARGET-STREAM-OUTPUT is the output produced by the target program.
All the target output is prefixed by `@'.
* LOG-STREAM-OUTPUT is output text coming from GDB's internals, for
instance messages that should be displayed as part of an error
log. All the log output is prefixed by `&'.
* New GDB/MI commands should only output LISTS containing VALUES.
*Note GDB/MI Stream Records: GDB/MI Stream Records, for more details
about the various output records.
File: gdb.info, Node: GDB/MI Simple Examples, Prev: GDB/MI Output Syntax, Up: GDB/MI Command Syntax
24.1.3 Simple Examples of GDB/MI Interaction
--------------------------------------------
This subsection presents several simple examples of interaction using
the GDB/MI interface. In these examples, `->' means that the following
line is passed to GDB/MI as input, while `<-' means the output received
from GDB/MI.
Target Stop
...........
Here's an example of stopping the inferior process:
-> -stop
<- (gdb)
and later:
<- *stop,reason="stop",address="0x123",source="a.c:123"
<- (gdb)
Simple CLI Command
..................
Here's an example of a simple CLI command being passed through GDB/MI
and on to the CLI.
-> print 1+2
<- &"print 1+2\n"
<- ~"$1 = 3\n"
<- ^done
<- (gdb)
Command With Side Effects
.........................
-> -symbol-file xyz.exe
<- *breakpoint,nr="3",address="0x123",source="a.c:123"
<- (gdb)
A Bad Command
.............
Here's what happens if you pass a non-existent command:
-> -rubbish
<- ^error,msg="Undefined MI command: rubbish"
<- (gdb)
File: gdb.info, Node: GDB/MI Compatibility with CLI, Next: GDB/MI Output Records, Prev: GDB/MI Command Syntax, Up: GDB/MI
24.2 GDB/MI Compatibility with CLI
==================================
To help users familiar with GDB's existing CLI interface, GDB/MI
accepts existing CLI commands. As specified by the syntax, such
commands can be directly entered into the GDB/MI interface and GDB will
respond.
This mechanism is provided as an aid to developers of GDB/MI clients
and not as a reliable interface into the CLI. Since the command is
being interpreteted in an environment that assumes GDB/MI behaviour,
the exact output of such commands is likely to end up being an
un-supported hybrid of GDB/MI and CLI output.
File: gdb.info, Node: GDB/MI Output Records, Next: GDB/MI Command Description Format, Prev: GDB/MI Compatibility with CLI, Up: GDB/MI
24.3 GDB/MI Output Records
==========================
* Menu:
* GDB/MI Result Records::
* GDB/MI Stream Records::
* GDB/MI Out-of-band Records::
File: gdb.info, Node: GDB/MI Result Records, Next: GDB/MI Stream Records, Up: GDB/MI Output Records
24.3.1 GDB/MI Result Records
----------------------------
In addition to a number of out-of-band notifications, the response to a
GDB/MI command includes one of the following result indications:
`"^done" [ "," RESULTS ]'
The synchronous operation was successful, `RESULTS' are the return
values.
`"^running"'
The asynchronous operation was successfully started. The target is
running.
`"^error" "," C-STRING'
The operation failed. The `C-STRING' contains the corresponding
error message.
File: gdb.info, Node: GDB/MI Stream Records, Next: GDB/MI Out-of-band Records, Prev: GDB/MI Result Records, Up: GDB/MI Output Records
24.3.2 GDB/MI Stream Records
----------------------------
GDB internally maintains a number of output streams: the console, the
target, and the log. The output intended for each of these streams is
funneled through the GDB/MI interface using "stream records".
Each stream record begins with a unique "prefix character" which
identifies its stream (*note GDB/MI Output Syntax: GDB/MI Output
Syntax.). In addition to the prefix, each stream record contains a
`STRING-OUTPUT'. This is either raw text (with an implicit new line)
or a quoted C string (which does not contain an implicit newline).
`"~" STRING-OUTPUT'
The console output stream contains text that should be displayed
in the CLI console window. It contains the textual responses to
CLI commands.
`"@" STRING-OUTPUT'
The target output stream contains any textual output from the
running target.
`"&" STRING-OUTPUT'
The log stream contains debugging messages being produced by GDB's
internals.
File: gdb.info, Node: GDB/MI Out-of-band Records, Prev: GDB/MI Stream Records, Up: GDB/MI Output Records
24.3.3 GDB/MI Out-of-band Records
---------------------------------
"Out-of-band" records are used to notify the GDB/MI client of
additional changes that have occurred. Those changes can either be a
consequence of GDB/MI (e.g., a breakpoint modified) or a result of
target activity (e.g., target stopped).
The following is a preliminary list of possible out-of-band records.
`"*" "stop"'
File: gdb.info, Node: GDB/MI Command Description Format, Next: GDB/MI Breakpoint Table Commands, Prev: GDB/MI Output Records, Up: GDB/MI
24.4 GDB/MI Command Description Format
======================================
The remaining sections describe blocks of commands. Each block of
commands is laid out in a fashion similar to this section.
Note the the line breaks shown in the examples are here only for
readability. They don't appear in the real output. Also note that the
commands with a non-available example (N.A.) are not yet implemented.
Motivation
----------
The motivation for this collection of commands.
Introduction
------------
A brief introduction to this collection of commands as a whole.
Commands
--------
For each command in the block, the following is described:
Synopsis
........
-command ARGS...
GDB Command
...........
The corresponding GDB CLI command.
Result
......
Out-of-band
...........
Notes
.....
Example
.......
File: gdb.info, Node: GDB/MI Breakpoint Table Commands, Next: GDB/MI Data Manipulation, Prev: GDB/MI Command Description Format, Up: GDB/MI
24.5 GDB/MI Breakpoint table commands
=====================================
This section documents GDB/MI commands for manipulating breakpoints.
The `-break-after' Command
--------------------------
Synopsis
........
-break-after NUMBER COUNT
The breakpoint number NUMBER is not in effect until it has been hit
COUNT times. To see how this is reflected in the output of the
`-break-list' command, see the description of the `-break-list' command
below.
GDB Command
...........
The corresponding GDB command is `ignore'.
Example
.......
(gdb)
-break-insert main
^done,bkpt={number="1",addr="0x000100d0",file="hello.c",line="5"}
(gdb)
-break-after 1 3
~
^done
(gdb)
-break-list
^done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",line="5",times="0",
ignore="3"}]}
(gdb)
The `-break-condition' Command
------------------------------
Synopsis
........
-break-condition NUMBER EXPR
Breakpoint NUMBER will stop the program only if the condition in
EXPR is true. The condition becomes part of the `-break-list' output
(see the description of the `-break-list' command below).
GDB Command
...........
The corresponding GDB command is `condition'.
Example
.......
(gdb)
-break-condition 1 1
^done
(gdb)
-break-list
^done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",line="5",cond="1",
times="0",ignore="3"}]}
(gdb)
The `-break-delete' Command
---------------------------
Synopsis
........
-break-delete ( BREAKPOINT )+
Delete the breakpoint(s) whose number(s) are specified in the
argument list. This is obviously reflected in the breakpoint list.
GDB command
...........
The corresponding GDB command is `delete'.
Example
.......
(gdb)
-break-delete 1
^done
(gdb)
-break-list
^done,BreakpointTable={nr_rows="0",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[]}
(gdb)
The `-break-disable' Command
----------------------------
Synopsis
........
-break-disable ( BREAKPOINT )+
Disable the named BREAKPOINT(s). The field `enabled' in the break
list is now set to `n' for the named BREAKPOINT(s).
GDB Command
...........
The corresponding GDB command is `disable'.
Example
.......
(gdb)
-break-disable 2
^done
(gdb)
-break-list
^done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="2",type="breakpoint",disp="keep",enabled="n",
addr="0x000100d0",func="main",file="hello.c",line="5",times="0"}]}
(gdb)
The `-break-enable' Command
---------------------------
Synopsis
........
-break-enable ( BREAKPOINT )+
Enable (previously disabled) BREAKPOINT(s).
GDB Command
...........
The corresponding GDB command is `enable'.
Example
.......
(gdb)
-break-enable 2
^done
(gdb)
-break-list
^done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="2",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",line="5",times="0"}]}
(gdb)
The `-break-info' Command
-------------------------
Synopsis
........
-break-info BREAKPOINT
Get information about a single breakpoint.
GDB command
...........
The corresponding GDB command is `info break BREAKPOINT'.
Example
.......
N.A.
The `-break-insert' Command
---------------------------
Synopsis
........
-break-insert [ -t ] [ -h ] [ -r ]
[ -c CONDITION ] [ -i IGNORE-COUNT ]
[ -p THREAD ] [ LINE | ADDR ]
If specified, LINE, can be one of:
* function
* filename:linenum
* filename:function
* *address
The possible optional parameters of this command are:
`-t'
Insert a tempoary breakpoint.
`-h'
Insert a hardware breakpoint.
`-c CONDITION'
Make the breakpoint conditional on CONDITION.
`-i IGNORE-COUNT'
Initialize the IGNORE-COUNT.
`-r'
Insert a regular breakpoint in all the functions whose names match
the given regular expression. Other flags are not applicable to
regular expresson.
Result
......
The result is in the form:
^done,bkptno="NUMBER",func="FUNCNAME",
file="FILENAME",line="LINENO"
where NUMBER is the GDB number for this breakpoint, FUNCNAME is the
name of the function where the breakpoint was inserted, FILENAME is the
name of the source file which contains this function, and LINENO is the
source line number within that file.
Note: this format is open to change.
GDB Command
...........
The corresponding GDB commands are `break', `tbreak', `hbreak',
`thbreak', and `rbreak'.
Example
.......
(gdb)
-break-insert main
^done,bkpt={number="1",addr="0x0001072c",file="recursive2.c",line="4"}
(gdb)
-break-insert -t foo
^done,bkpt={number="2",addr="0x00010774",file="recursive2.c",line="11"}
(gdb)
-break-list
^done,BreakpointTable={nr_rows="2",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x0001072c", func="main",file="recursive2.c",line="4",times="0"},
bkpt={number="2",type="breakpoint",disp="del",enabled="y",
addr="0x00010774",func="foo",file="recursive2.c",line="11",times="0"}]}
(gdb)
-break-insert -r foo.*
~int foo(int, int);
^done,bkpt={number="3",addr="0x00010774",file="recursive2.c",line="11"}
(gdb)
The `-break-list' Command
-------------------------
Synopsis
........
-break-list
Displays the list of inserted breakpoints, showing the following
fields:
`Number'
number of the breakpoint
`Type'
type of the breakpoint: `breakpoint' or `watchpoint'
`Disposition'
should the breakpoint be deleted or disabled when it is hit: `keep'
or `nokeep'
`Enabled'
is the breakpoint enabled or no: `y' or `n'
`Address'
memory location at which the breakpoint is set
`What'
logical location of the breakpoint, expressed by function name,
file name, line number
`Times'
number of times the breakpoint has been hit
If there are no breakpoints or watchpoints, the `BreakpointTable'
`body' field is an empty list.
GDB Command
...........
The corresponding GDB command is `info break'.
Example
.......
(gdb)
-break-list
^done,BreakpointTable={nr_rows="2",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",line="5",times="0"},
bkpt={number="2",type="breakpoint",disp="keep",enabled="y",
addr="0x00010114",func="foo",file="hello.c",line="13",times="0"}]}
(gdb)
Here's an example of the result when there are no breakpoints:
(gdb)
-break-list
^done,BreakpointTable={nr_rows="0",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[]}
(gdb)
The `-break-watch' Command
--------------------------
Synopsis
........
-break-watch [ -a | -r ]
Create a watchpoint. With the `-a' option it will create an
"access" watchpoint, i.e. a watchpoint that triggers either on a read
from or on a write to the memory location. With the `-r' option, the
watchpoint created is a "read" watchpoint, i.e. it will trigger only
when the memory location is accessed for reading. Without either of
the options, the watchpoint created is a regular watchpoint, i.e. it
will trigger when the memory location is accessed for writing. *Note
Setting watchpoints: Set Watchpoints.
Note that `-break-list' will report a single list of watchpoints and
breakpoints inserted.
GDB Command
...........
The corresponding GDB commands are `watch', `awatch', and `rwatch'.
Example
.......
Setting a watchpoint on a variable in the `main' function:
(gdb)
-break-watch x
^done,wpt={number="2",exp="x"}
(gdb)
-exec-continue
^running
^done,reason="watchpoint-trigger",wpt={number="2",exp="x"},
value={old="-268439212",new="55"},
frame={func="main",args=[],file="recursive2.c",line="5"}
(gdb)
Setting a watchpoint on a variable local to a function. GDB will
stop the program execution twice: first for the variable changing
value, then for the watchpoint going out of scope.
(gdb)
-break-watch C
^done,wpt={number="5",exp="C"}
(gdb)
-exec-continue
^running
^done,reason="watchpoint-trigger",
wpt={number="5",exp="C"},value={old="-276895068",new="3"},
frame={func="callee4",args=[],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="13"}
(gdb)
-exec-continue
^running
^done,reason="watchpoint-scope",wpnum="5",
frame={func="callee3",args=[{name="strarg",
value="0x11940 \"A string argument.\""}],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="18"}
(gdb)
Listing breakpoints and watchpoints, at different points in the
program execution. Note that once the watchpoint goes out of scope, it
is deleted.
(gdb)
-break-watch C
^done,wpt={number="2",exp="C"}
(gdb)
-break-list
^done,BreakpointTable={nr_rows="2",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"},
bkpt={number="2",type="watchpoint",disp="keep",
enabled="y",addr="",what="C",times="0"}]}
(gdb)
-exec-continue
^running
^done,reason="watchpoint-trigger",wpt={number="2",exp="C"},
value={old="-276895068",new="3"},
frame={func="callee4",args=[],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="13"}
(gdb)
-break-list
^done,BreakpointTable={nr_rows="2",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"},
bkpt={number="2",type="watchpoint",disp="keep",
enabled="y",addr="",what="C",times="-5"}]}
(gdb)
-exec-continue
^running
^done,reason="watchpoint-scope",wpnum="2",
frame={func="callee3",args=[{name="strarg",
value="0x11940 \"A string argument.\""}],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="18"}
(gdb)
-break-list
^done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"}]}
(gdb)
File: gdb.info, Node: GDB/MI Data Manipulation, Next: GDB/MI Program Control, Prev: GDB/MI Breakpoint Table Commands, Up: GDB/MI
24.6 GDB/MI Data Manipulation
=============================
This section describes the GDB/MI commands that manipulate data:
examine memory and registers, evaluate expressions, etc.
The `-data-disassemble' Command
-------------------------------
Synopsis
........
-data-disassemble
[ -s START-ADDR -e END-ADDR ]
| [ -f FILENAME -l LINENUM [ -n LINES ] ]
-- MODE
Where:
`START-ADDR'
is the beginning address (or `$pc')
`END-ADDR'
is the end address
`FILENAME'
is the name of the file to disassemble
`LINENUM'
is the line number to disassemble around
`LINES'
is the the number of disassembly lines to be produced. If it is
-1, the whole function will be disassembled, in case no END-ADDR is
specified. If END-ADDR is specified as a non-zero value, and
LINES is lower than the number of disassembly lines between
START-ADDR and END-ADDR, only LINES lines are displayed; if LINES
is higher than the number of lines between START-ADDR and
END-ADDR, only the lines up to END-ADDR are displayed.
`MODE'
is either 0 (meaning only disassembly) or 1 (meaning mixed source
and disassembly).
Result
......
The output for each instruction is composed of four fields:
* Address
* Func-name
* Offset
* Instruction
Note that whatever included in the instruction field, is not
manipulated directely by GDB/MI, i.e. it is not possible to adjust its
format.
GDB Command
...........
There's no direct mapping from this command to the CLI.
Example
.......
Disassemble from the current value of `$pc' to `$pc + 20':
(gdb)
-data-disassemble -s $pc -e "$pc + 20" -- 0
^done,
asm_insns=[
{address="0x000107c0",func-name="main",offset="4",
inst="mov 2, %o0"},
{address="0x000107c4",func-name="main",offset="8",
inst="sethi %hi(0x11800), %o2"},
{address="0x000107c8",func-name="main",offset="12",
inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"},
{address="0x000107cc",func-name="main",offset="16",
inst="sethi %hi(0x11800), %o2"},
{address="0x000107d0",func-name="main",offset="20",
inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"}]
(gdb)
Disassemble the whole `main' function. Line 32 is part of `main'.
-data-disassemble -f basics.c -l 32 -- 0
^done,asm_insns=[
{address="0x000107bc",func-name="main",offset="0",
inst="save %sp, -112, %sp"},
{address="0x000107c0",func-name="main",offset="4",
inst="mov 2, %o0"},
{address="0x000107c4",func-name="main",offset="8",
inst="sethi %hi(0x11800), %o2"},
[...]
{address="0x0001081c",func-name="main",offset="96",inst="ret "},
{address="0x00010820",func-name="main",offset="100",inst="restore "}]
(gdb)
Disassemble 3 instructions from the start of `main':
(gdb)
-data-disassemble -f basics.c -l 32 -n 3 -- 0
^done,asm_insns=[
{address="0x000107bc",func-name="main",offset="0",
inst="save %sp, -112, %sp"},
{address="0x000107c0",func-name="main",offset="4",
inst="mov 2, %o0"},
{address="0x000107c4",func-name="main",offset="8",
inst="sethi %hi(0x11800), %o2"}]
(gdb)
Disassemble 3 instructions from the start of `main' in mixed mode:
(gdb)
-data-disassemble -f basics.c -l 32 -n 3 -- 1
^done,asm_insns=[
src_and_asm_line={line="31",
file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
testsuite/gdb.mi/basics.c",line_asm_insn=[
{address="0x000107bc",func-name="main",offset="0",
inst="save %sp, -112, %sp"}]},
src_and_asm_line={line="32",
file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
testsuite/gdb.mi/basics.c",line_asm_insn=[
{address="0x000107c0",func-name="main",offset="4",
inst="mov 2, %o0"},
{address="0x000107c4",func-name="main",offset="8",
inst="sethi %hi(0x11800), %o2"}]}]
(gdb)
The `-data-evaluate-expression' Command
---------------------------------------
Synopsis
........
-data-evaluate-expression EXPR
Evaluate EXPR as an expression. The expression could contain an
inferior function call. The function call will execute synchronously.
If the expression contains spaces, it must be enclosed in double quotes.
GDB Command
...........
The corresponding GDB commands are `print', `output', and `call'. In
`gdbtk' only, there's a corresponding `gdb_eval' command.
Example
.......
In the following example, the numbers that precede the commands are the
"tokens" described in *Note GDB/MI Command Syntax: GDB/MI Command
Syntax. Notice how GDB/MI returns the same tokens in its output.
211-data-evaluate-expression A
211^done,value="1"
(gdb)
311-data-evaluate-expression &A
311^done,value="0xefffeb7c"
(gdb)
411-data-evaluate-expression A+3
411^done,value="4"
(gdb)
511-data-evaluate-expression "A + 3"
511^done,value="4"
(gdb)
The `-data-list-changed-registers' Command
------------------------------------------
Synopsis
........
-data-list-changed-registers
Display a list of the registers that have changed.
GDB Command
...........
GDB doesn't have a direct analog for this command; `gdbtk' has the
corresponding command `gdb_changed_register_list'.
Example
.......
On a PPC MBX board:
(gdb)
-exec-continue
^running
(gdb)
*stopped,reason="breakpoint-hit",bkptno="1",frame={func="main",
args=[],file="try.c",line="5"}
(gdb)
-data-list-changed-registers
^done,changed-registers=["0","1","2","4","5","6","7","8","9",
"10","11","13","14","15","16","17","18","19","20","21","22","23",
"24","25","26","27","28","30","31","64","65","66","67","69"]
(gdb)
The `-data-list-register-names' Command
---------------------------------------
Synopsis
........
-data-list-register-names [ ( REGNO )+ ]
Show a list of register names for the current target. If no
arguments are given, it shows a list of the names of all the registers.
If integer numbers are given as arguments, it will print a list of the
names of the registers corresponding to the arguments. To ensure
consistency between a register name and its number, the output list may
include empty register names.
GDB Command
...........
GDB does not have a command which corresponds to
`-data-list-register-names'. In `gdbtk' there is a corresponding
command `gdb_regnames'.
Example
.......
For the PPC MBX board:
(gdb)
-data-list-register-names
^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
"", "pc","ps","cr","lr","ctr","xer"]
(gdb)
-data-list-register-names 1 2 3
^done,register-names=["r1","r2","r3"]
(gdb)
The `-data-list-register-values' Command
----------------------------------------
Synopsis
........
-data-list-register-values FMT [ ( REGNO )*]
Display the registers' contents. FMT is the format according to
which the registers' contents are to be returned, followed by an
optional list of numbers specifying the registers to display. A
missing list of numbers indicates that the contents of all the
registers must be returned.
Allowed formats for FMT are:
`x'
Hexadecimal
`o'
Octal
`t'
Binary
`d'
Decimal
`r'
Raw
`N'
Natural
GDB Command
...........
The corresponding GDB commands are `info reg', `info all-reg', and (in
`gdbtk') `gdb_fetch_registers'.
Example
.......
For a PPC MBX board (note: line breaks are for readability only, they
don't appear in the actual output):
(gdb)
-data-list-register-values r 64 65
^done,register-values=[{number="64",value="0xfe00a300"},
{number="65",value="0x00029002"}]
(gdb)
-data-list-register-values x
^done,register-values=[{number="0",value="0xfe0043c8"},
{number="1",value="0x3fff88"},{number="2",value="0xfffffffe"},
{number="3",value="0x0"},{number="4",value="0xa"},
{number="5",value="0x3fff68"},{number="6",value="0x3fff58"},
{number="7",value="0xfe011e98"},{number="8",value="0x2"},
{number="9",value="0xfa202820"},{number="10",value="0xfa202808"},
{number="11",value="0x1"},{number="12",value="0x0"},
{number="13",value="0x4544"},{number="14",value="0xffdfffff"},
{number="15",value="0xffffffff"},{number="16",value="0xfffffeff"},
{number="17",value="0xefffffed"},{number="18",value="0xfffffffe"},
{number="19",value="0xffffffff"},{number="20",value="0xffffffff"},
{number="21",value="0xffffffff"},{number="22",value="0xfffffff7"},
{number="23",value="0xffffffff"},{number="24",value="0xffffffff"},
{number="25",value="0xffffffff"},{number="26",value="0xfffffffb"},
{number="27",value="0xffffffff"},{number="28",value="0xf7bfffff"},
{number="29",value="0x0"},{number="30",value="0xfe010000"},
{number="31",value="0x0"},{number="32",value="0x0"},
{number="33",value="0x0"},{number="34",value="0x0"},
{number="35",value="0x0"},{number="36",value="0x0"},
{number="37",value="0x0"},{number="38",value="0x0"},
{number="39",value="0x0"},{number="40",value="0x0"},
{number="41",value="0x0"},{number="42",value="0x0"},
{number="43",value="0x0"},{number="44",value="0x0"},
{number="45",value="0x0"},{number="46",value="0x0"},
{number="47",value="0x0"},{number="48",value="0x0"},
{number="49",value="0x0"},{number="50",value="0x0"},
{number="51",value="0x0"},{number="52",value="0x0"},
{number="53",value="0x0"},{number="54",value="0x0"},
{number="55",value="0x0"},{number="56",value="0x0"},
{number="57",value="0x0"},{number="58",value="0x0"},
{number="59",value="0x0"},{number="60",value="0x0"},
{number="61",value="0x0"},{number="62",value="0x0"},
{number="63",value="0x0"},{number="64",value="0xfe00a300"},
{number="65",value="0x29002"},{number="66",value="0x202f04b5"},
{number="67",value="0xfe0043b0"},{number="68",value="0xfe00b3e4"},
{number="69",value="0x20002b03"}]
(gdb)
The `-data-read-memory' Command
-------------------------------
Synopsis
........
-data-read-memory [ -o BYTE-OFFSET ]
ADDRESS WORD-FORMAT WORD-SIZE
NR-ROWS NR-COLS [ ASCHAR ]
where:
`ADDRESS'
An expression specifying the address of the first memory word to be
read. Complex expressions containing embedded white space should
be quoted using the C convention.
`WORD-FORMAT'
The format to be used to print the memory words. The notation is
the same as for GDB's `print' command (*note Output formats:
Output Formats.).
`WORD-SIZE'
The size of each memory word in bytes.
`NR-ROWS'
The number of rows in the output table.
`NR-COLS'
The number of columns in the output table.
`ASCHAR'
If present, indicates that each row should include an ASCII dump.
The value of ASCHAR is used as a padding character when a byte is
not a member of the printable ASCII character set (printable ASCII
characters are those whose code is between 32 and 126,
inclusively).
`BYTE-OFFSET'
An offset to add to the ADDRESS before fetching memory.
This command displays memory contents as a table of NR-ROWS by
NR-COLS words, each word being WORD-SIZE bytes. In total, `NR-ROWS *
NR-COLS * WORD-SIZE' bytes are read (returned as `total-bytes').
Should less than the requested number of bytes be returned by the
target, the missing words are identified using `N/A'. The number of
bytes read from the target is returned in `nr-bytes' and the starting
address used to read memory in `addr'.
The address of the next/previous row or page is available in
`next-row' and `prev-row', `next-page' and `prev-page'.
GDB Command
...........
The corresponding GDB command is `x'. `gdbtk' has `gdb_get_mem' memory
read command.
Example
.......
Read six bytes of memory starting at `bytes+6' but then offset by `-6'
bytes. Format as three rows of two columns. One byte per word.
Display each word in hex.
(gdb)
9-data-read-memory -o -6 -- bytes+6 x 1 3 2
9^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
prev-page="0x0000138a",memory=[
{addr="0x00001390",data=["0x00","0x01"]},
{addr="0x00001392",data=["0x02","0x03"]},
{addr="0x00001394",data=["0x04","0x05"]}]
(gdb)
Read two bytes of memory starting at address `shorts + 64' and
display as a single word formatted in decimal.
(gdb)
5-data-read-memory shorts+64 d 2 1 1
5^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
next-row="0x00001512",prev-row="0x0000150e",
next-page="0x00001512",prev-page="0x0000150e",memory=[
{addr="0x00001510",data=["128"]}]
(gdb)
Read thirty two bytes of memory starting at `bytes+16' and format as
eight rows of four columns. Include a string encoding with `x' used as
the non-printable character.
(gdb)
4-data-read-memory bytes+16 x 1 8 4 x
4^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
next-row="0x000013c0",prev-row="0x0000139c",
next-page="0x000013c0",prev-page="0x00001380",memory=[
{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"},
{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"},
{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"},
{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"},
{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"},
{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"},
{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"},
{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"}]
(gdb)
The `-display-delete' Command
-----------------------------
Synopsis
........
-display-delete NUMBER
Delete the display NUMBER.
GDB Command
...........
The corresponding GDB command is `delete display'.
Example
.......
N.A.
The `-display-disable' Command
------------------------------
Synopsis
........
-display-disable NUMBER
Disable display NUMBER.
GDB Command
...........
The corresponding GDB command is `disable display'.
Example
.......
N.A.
The `-display-enable' Command
-----------------------------
Synopsis
........
-display-enable NUMBER
Enable display NUMBER.
GDB Command
...........
The corresponding GDB command is `enable display'.
Example
.......
N.A.
The `-display-insert' Command
-----------------------------
Synopsis
........
-display-insert EXPRESSION
Display EXPRESSION every time the program stops.
GDB Command
...........
The corresponding GDB command is `display'.
Example
.......
N.A.
The `-display-list' Command
---------------------------
Synopsis
........
-display-list
List the displays. Do not show the current values.
GDB Command
...........
The corresponding GDB command is `info display'.
Example
.......
N.A.
The `-environment-cd' Command
-----------------------------
Synopsis
........
-environment-cd PATHDIR
Set GDB's working directory.
GDB Command
...........
The corresponding GDB command is `cd'.
Example
.......
(gdb)
-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
^done
(gdb)
The `-environment-directory' Command
------------------------------------
Synopsis
........
-environment-directory [ -r ] [ PATHDIR ]+
Add directories PATHDIR to beginning of search path for source files.
If the `-r' option is used, the search path is reset to the default
search path. If directories PATHDIR are supplied in addition to the
`-r' option, the search path is first reset and then addition occurs as
normal. Multiple directories may be specified, separated by blanks.
Specifying multiple directories in a single command results in the
directories added to the beginning of the search path in the same order
they were presented in the command. If blanks are needed as part of a
directory name, double-quotes should be used around the name. In the
command output, the path will show up separated by the system
directory-separator character. The directory-seperator character must
not be used in any directory name. If no directories are specified,
the current search path is displayed.
GDB Command
...........
The corresponding GDB command is `dir'.
Example
.......
(gdb)
-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
(gdb)
-environment-directory ""
^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
(gdb)
-environment-directory -r /home/jjohnstn/src/gdb /usr/src
^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
(gdb)
-environment-directory -r
^done,source-path="$cdir:$cwd"
(gdb)
The `-environment-path' Command
-------------------------------
Synopsis
........
-environment-path [ -r ] [ PATHDIR ]+
Add directories PATHDIR to beginning of search path for object files.
If the `-r' option is used, the search path is reset to the original
search path that existed at gdb start-up. If directories PATHDIR are
supplied in addition to the `-r' option, the search path is first reset
and then addition occurs as normal. Multiple directories may be
specified, separated by blanks. Specifying multiple directories in a
single command results in the directories added to the beginning of the
search path in the same order they were presented in the command. If
blanks are needed as part of a directory name, double-quotes should be
used around the name. In the command output, the path will show up
separated by the system directory-separator character. The
directory-seperator character must not be used in any directory name.
If no directories are specified, the current path is displayed.
GDB Command
...........
The corresponding GDB command is `path'.
Example
.......
(gdb)
-environment-path
^done,path="/usr/bin"
(gdb)
-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
(gdb)
-environment-path -r /usr/local/bin
^done,path="/usr/local/bin:/usr/bin"
(gdb)
The `-environment-pwd' Command
------------------------------
Synopsis
........
-environment-pwd
Show the current working directory.
GDB command
...........
The corresponding GDB command is `pwd'.
Example
.......
(gdb)
-environment-pwd
^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
(gdb)
File: gdb.info, Node: GDB/MI Program Control, Next: GDB/MI Miscellaneous Commands, Prev: GDB/MI Data Manipulation, Up: GDB/MI
24.7 GDB/MI Program control
===========================
Program termination
...................
As a result of execution, the inferior program can run to completion, if
it doesn't encounter any breakpoints. In this case the output will
include an exit code, if the program has exited exceptionally.
Examples
........
Program exited normally:
(gdb)
-exec-run
^running
(gdb)
x = 55
*stopped,reason="exited-normally"
(gdb)
Program exited exceptionally:
(gdb)
-exec-run
^running
(gdb)
x = 55
*stopped,reason="exited",exit-code="01"
(gdb)
Another way the program can terminate is if it receives a signal
such as `SIGINT'. In this case, GDB/MI displays this:
(gdb)
*stopped,reason="exited-signalled",signal-name="SIGINT",
signal-meaning="Interrupt"
The `-exec-abort' Command
-------------------------
Synopsis
........
-exec-abort
Kill the inferior running program.
GDB Command
...........
The corresponding GDB command is `kill'.
Example
.......
N.A.
The `-exec-arguments' Command
-----------------------------
Synopsis
........
-exec-arguments ARGS
Set the inferior program arguments, to be used in the next
`-exec-run'.
GDB Command
...........
The corresponding GDB command is `set args'.
Example
.......
Don't have one around.
The `-exec-continue' Command
----------------------------
Synopsis
........
-exec-continue
Asynchronous command. Resumes the execution of the inferior program
until a breakpoint is encountered, or until the inferior exits.
GDB Command
...........
The corresponding GDB corresponding is `continue'.
Example
.......
-exec-continue
^running
(gdb)
@Hello world
*stopped,reason="breakpoint-hit",bkptno="2",frame={func="foo",args=[],
file="hello.c",line="13"}
(gdb)
The `-exec-finish' Command
--------------------------
Synopsis
........
-exec-finish
Asynchronous command. Resumes the execution of the inferior program
until the current function is exited. Displays the results returned by
the function.
GDB Command
...........
The corresponding GDB command is `finish'.
Example
.......
Function returning `void'.
-exec-finish
^running
(gdb)
@hello from foo
*stopped,reason="function-finished",frame={func="main",args=[],
file="hello.c",line="7"}
(gdb)
Function returning other than `void'. The name of the internal GDB
variable storing the result is printed, together with the value itself.
-exec-finish
^running
(gdb)
*stopped,reason="function-finished",frame={addr="0x000107b0",func="foo",
args=[{name="a",value="1"],{name="b",value="9"}},
file="recursive2.c",line="14"},
gdb-result-var="$1",return-value="0"
(gdb)
The `-exec-interrupt' Command
-----------------------------
Synopsis
........
-exec-interrupt
Asynchronous command. Interrupts the background execution of the
target. Note how the token associated with the stop message is the one
for the execution command that has been interrupted. The token for the
interrupt itself only appears in the `^done' output. If the user is
trying to interrupt a non-running program, an error message will be
printed.
GDB Command
...........
The corresponding GDB command is `interrupt'.
Example
.......
(gdb)
111-exec-continue
111^running
(gdb)
222-exec-interrupt
222^done
(gdb)
111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
frame={addr="0x00010140",func="foo",args=[],file="try.c",line="13"}
(gdb)
(gdb)
-exec-interrupt
^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
(gdb)
The `-exec-next' Command
------------------------
Synopsis
........
-exec-next
Asynchronous command. Resumes execution of the inferior program,
stopping when the beginning of the next source line is reached.
GDB Command
...........
The corresponding GDB command is `next'.
Example
.......
-exec-next
^running
(gdb)
*stopped,reason="end-stepping-range",line="8",file="hello.c"
(gdb)
The `-exec-next-instruction' Command
------------------------------------
Synopsis
........
-exec-next-instruction
Asynchronous command. Executes one machine instruction. If the
instruction is a function call continues until the function returns. If
the program stops at an instruction in the middle of a source line, the
address will be printed as well.
GDB Command
...........
The corresponding GDB command is `nexti'.
Example
.......
(gdb)
-exec-next-instruction
^running
(gdb)
*stopped,reason="end-stepping-range",
addr="0x000100d4",line="5",file="hello.c"
(gdb)
The `-exec-return' Command
--------------------------
Synopsis
........
-exec-return
Makes current function return immediately. Doesn't execute the
inferior. Displays the new current frame.
GDB Command
...........
The corresponding GDB command is `return'.
Example
.......
(gdb)
200-break-insert callee4
200^done,bkpt={number="1",addr="0x00010734",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"}
(gdb)
000-exec-run
000^running
(gdb)
000*stopped,reason="breakpoint-hit",bkptno="1",
frame={func="callee4",args=[],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"}
(gdb)
205-break-delete
205^done
(gdb)
111-exec-return
111^done,frame={level="0",func="callee3",
args=[{name="strarg",
value="0x11940 \"A string argument.\""}],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="18"}
(gdb)
The `-exec-run' Command
-----------------------
Synopsis
........
-exec-run
Asynchronous command. Starts execution of the inferior from the
beginning. The inferior executes until either a breakpoint is
encountered or the program exits.
GDB Command
...........
The corresponding GDB command is `run'.
Example
.......
(gdb)
-break-insert main
^done,bkpt={number="1",addr="0x0001072c",file="recursive2.c",line="4"}
(gdb)
-exec-run
^running
(gdb)
*stopped,reason="breakpoint-hit",bkptno="1",
frame={func="main",args=[],file="recursive2.c",line="4"}
(gdb)
The `-exec-show-arguments' Command
----------------------------------
Synopsis
........
-exec-show-arguments
Print the arguments of the program.
GDB Command
...........
The corresponding GDB command is `show args'.
Example
.......
N.A.
The `-exec-step' Command
------------------------
Synopsis
........
-exec-step
Asynchronous command. Resumes execution of the inferior program,
stopping when the beginning of the next source line is reached, if the
next source line is not a function call. If it is, stop at the first
instruction of the called function.
GDB Command
...........
The corresponding GDB command is `step'.
Example
.......
Stepping into a function:
-exec-step
^running
(gdb)
*stopped,reason="end-stepping-range",
frame={func="foo",args=[{name="a",value="10"},
{name="b",value="0"}],file="recursive2.c",line="11"}
(gdb)
Regular stepping:
-exec-step
^running
(gdb)
*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
(gdb)
The `-exec-step-instruction' Command
------------------------------------
Synopsis
........
-exec-step-instruction
Asynchronous command. Resumes the inferior which executes one
machine instruction. The output, once GDB has stopped, will vary
depending on whether we have stopped in the middle of a source line or
not. In the former case, the address at which the program stopped will
be printed as well.
GDB Command
...........
The corresponding GDB command is `stepi'.
Example
.......
(gdb)
-exec-step-instruction
^running
(gdb)
*stopped,reason="end-stepping-range",
frame={func="foo",args=[],file="try.c",line="10"}
(gdb)
-exec-step-instruction
^running
(gdb)
*stopped,reason="end-stepping-range",
frame={addr="0x000100f4",func="foo",args=[],file="try.c",line="10"}
(gdb)
The `-exec-until' Command
-------------------------
Synopsis
........
-exec-until [ LOCATION ]
Asynchronous command. Executes the inferior until the LOCATION
specified in the argument is reached. If there is no argument, the
inferior executes until a source line greater than the current one is
reached. The reason for stopping in this case will be
`location-reached'.
GDB Command
...........
The corresponding GDB command is `until'.
Example
.......
(gdb)
-exec-until recursive2.c:6
^running
(gdb)
x = 55
*stopped,reason="location-reached",frame={func="main",args=[],
file="recursive2.c",line="6"}
(gdb)
The `-file-exec-and-symbols' Command
------------------------------------
Synopsis
........
-file-exec-and-symbols FILE
Specify the executable file to be debugged. This file is the one
from which the symbol table is also read. If no file is specified, the
command clears the executable and symbol information. If breakpoints
are set when using this command with no arguments, GDB will produce
error messages. Otherwise, no output is produced, except a completion
notification.
GDB Command
...........
The corresponding GDB command is `file'.
Example
.......
(gdb)
-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
^done
(gdb)
The `-file-exec-file' Command
-----------------------------
Synopsis
........
-file-exec-file FILE
Specify the executable file to be debugged. Unlike
`-file-exec-and-symbols', the symbol table is _not_ read from this
file. If used without argument, GDB clears the information about the
executable file. No output is produced, except a completion
notification.
GDB Command
...........
The corresponding GDB command is `exec-file'.
Example
.......
(gdb)
-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
^done
(gdb)
The `-file-list-exec-sections' Command
--------------------------------------
Synopsis
........
-file-list-exec-sections
List the sections of the current executable file.
GDB Command
...........
The GDB command `info file' shows, among the rest, the same information
as this command. `gdbtk' has a corresponding command `gdb_load_info'.
Example
.......
N.A.
The `-file-list-exec-source-file' Command
-----------------------------------------
Synopsis
........
-file-list-exec-source-file
List the line number, the current source file, and the absolute path
to the current source file for the current executable.
GDB Command
...........
There's no GDB command which directly corresponds to this one.
Example
.......
(gdb)
123-file-list-exec-source-file
123^done,line="1",file="foo.c",fullname="/home/bar/foo.c"
(gdb)
The `-file-list-exec-source-files' Command
------------------------------------------
Synopsis
........
-file-list-exec-source-files
List the source files for the current executable.
It will always output the filename, but only when GDB can find the
absolute file name of a source file, will it output the fullname.
GDB Command
...........
There's no GDB command which directly corresponds to this one. `gdbtk'
has an analogous command `gdb_listfiles'.
Example
.......
(gdb)
-file-list-exec-source-files
^done,files=[
{file=foo.c,fullname=/home/foo.c},
{file=/home/bar.c,fullname=/home/bar.c},
{file=gdb_could_not_find_fullpath.c}]
(gdb)
The `-file-list-shared-libraries' Command
-----------------------------------------
Synopsis
........
-file-list-shared-libraries
List the shared libraries in the program.
GDB Command
...........
The corresponding GDB command is `info shared'.
Example
.......
N.A.
The `-file-list-symbol-files' Command
-------------------------------------
Synopsis
........
-file-list-symbol-files
List symbol files.
GDB Command
...........
The corresponding GDB command is `info file' (part of it).
Example
.......
N.A.
The `-file-symbol-file' Command
-------------------------------
Synopsis
........
-file-symbol-file FILE
Read symbol table info from the specified FILE argument. When used
without arguments, clears GDB's symbol table info. No output is
produced, except for a completion notification.
GDB Command
...........
The corresponding GDB command is `symbol-file'.
Example
.......
(gdb)
-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
^done
(gdb)
File: gdb.info, Node: GDB/MI Miscellaneous Commands, Next: GDB/MI Stack Manipulation, Prev: GDB/MI Program Control, Up: GDB/MI
24.8 Miscellaneous GDB commands in GDB/MI
=========================================
The `-gdb-exit' Command
-----------------------
Synopsis
........
-gdb-exit
Exit GDB immediately.
GDB Command
...........
Approximately corresponds to `quit'.
Example
.......
(gdb)
-gdb-exit
The `-gdb-set' Command
----------------------
Synopsis
........
-gdb-set
Set an internal GDB variable.
GDB Command
...........
The corresponding GDB command is `set'.
Example
.......
(gdb)
-gdb-set $foo=3
^done
(gdb)
The `-gdb-show' Command
-----------------------
Synopsis
........
-gdb-show
Show the current value of a GDB variable.
GDB command
...........
The corresponding GDB command is `show'.
Example
.......
(gdb)
-gdb-show annotate
^done,value="0"
(gdb)
The `-gdb-version' Command
--------------------------
Synopsis
........
-gdb-version
Show version information for GDB. Used mostly in testing.
GDB Command
...........
There's no equivalent GDB command. GDB by default shows this
information when you start an interactive session.
Example
.......
(gdb)
-gdb-version
~GNU gdb 5.2.1
~Copyright 2000 Free Software Foundation, Inc.
~GDB is free software, covered by the GNU General Public License, and
~you are welcome to change it and/or distribute copies of it under
~ certain conditions.
~Type "show copying" to see the conditions.
~There is absolutely no warranty for GDB. Type "show warranty" for
~ details.
~This GDB was configured as
"--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
^done
(gdb)
The `-interpreter-exec' Command
-------------------------------
Synopsis
--------
-interpreter-exec INTERPRETER COMMAND
Execute the specified COMMAND in the given INTERPRETER.
GDB Command
-----------
The corresponding GDB command is `interpreter-exec'.
Example
-------
(gdb)
-interpreter-exec console "break main"
&"During symbol reading, couldn't parse type; debugger out of date?.\n"
&"During symbol reading, bad structure-type format.\n"
~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
^done
(gdb)
File: gdb.info, Node: GDB/MI Stack Manipulation, Next: GDB/MI Symbol Query, Prev: GDB/MI Miscellaneous Commands, Up: GDB/MI
24.9 GDB/MI Stack Manipulation Commands
=======================================
The `-stack-info-frame' Command
-------------------------------
Synopsis
........
-stack-info-frame
Get info on the current frame.
GDB Command
...........
The corresponding GDB command is `info frame' or `frame' (without
arguments).
Example
.......
N.A.
The `-stack-info-depth' Command
-------------------------------
Synopsis
........
-stack-info-depth [ MAX-DEPTH ]
Return the depth of the stack. If the integer argument MAX-DEPTH is
specified, do not count beyond MAX-DEPTH frames.
GDB Command
...........
There's no equivalent GDB command.
Example
.......
For a stack with frame levels 0 through 11:
(gdb)
-stack-info-depth
^done,depth="12"
(gdb)
-stack-info-depth 4
^done,depth="4"
(gdb)
-stack-info-depth 12
^done,depth="12"
(gdb)
-stack-info-depth 11
^done,depth="11"
(gdb)
-stack-info-depth 13
^done,depth="12"
(gdb)
The `-stack-list-arguments' Command
-----------------------------------
Synopsis
........
-stack-list-arguments SHOW-VALUES
[ LOW-FRAME HIGH-FRAME ]
Display a list of the arguments for the frames between LOW-FRAME and
HIGH-FRAME (inclusive). If LOW-FRAME and HIGH-FRAME are not provided,
list the arguments for the whole call stack.
The SHOW-VALUES argument must have a value of 0 or 1. A value of 0
means that only the names of the arguments are listed, a value of 1
means that both names and values of the arguments are printed.
GDB Command
...........
GDB does not have an equivalent command. `gdbtk' has a `gdb_get_args'
command which partially overlaps with the functionality of
`-stack-list-arguments'.
Example
.......
(gdb)
-stack-list-frames
^done,
stack=[
frame={level="0",addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"},
frame={level="1",addr="0x0001076c",func="callee3",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="17"},
frame={level="2",addr="0x0001078c",func="callee2",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="22"},
frame={level="3",addr="0x000107b4",func="callee1",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="27"},
frame={level="4",addr="0x000107e0",func="main",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="32"}]
(gdb)
-stack-list-arguments 0
^done,
stack-args=[
frame={level="0",args=[]},
frame={level="1",args=[name="strarg"]},
frame={level="2",args=[name="intarg",name="strarg"]},
frame={level="3",args=[name="intarg",name="strarg",name="fltarg"]},
frame={level="4",args=[]}]
(gdb)
-stack-list-arguments 1
^done,
stack-args=[
frame={level="0",args=[]},
frame={level="1",
args=[{name="strarg",value="0x11940 \"A string argument.\""}]},
frame={level="2",args=[
{name="intarg",value="2"},
{name="strarg",value="0x11940 \"A string argument.\""}]},
{frame={level="3",args=[
{name="intarg",value="2"},
{name="strarg",value="0x11940 \"A string argument.\""},
{name="fltarg",value="3.5"}]},
frame={level="4",args=[]}]
(gdb)
-stack-list-arguments 0 2 2
^done,stack-args=[frame={level="2",args=[name="intarg",name="strarg"]}]
(gdb)
-stack-list-arguments 1 2 2
^done,stack-args=[frame={level="2",
args=[{name="intarg",value="2"},
{name="strarg",value="0x11940 \"A string argument.\""}]}]
(gdb)
The `-stack-list-frames' Command
--------------------------------
Synopsis
........
-stack-list-frames [ LOW-FRAME HIGH-FRAME ]
List the frames currently on the stack. For each frame it displays
the following info:
`LEVEL'
The frame number, 0 being the topmost frame, i.e. the innermost
function.
`ADDR'
The `$pc' value for that frame.
`FUNC'
Function name.
`FILE'
File name of the source file where the function lives.
`LINE'
Line number corresponding to the `$pc'.
If invoked without arguments, this command prints a backtrace for the
whole stack. If given two integer arguments, it shows the frames whose
levels are between the two arguments (inclusive). If the two arguments
are equal, it shows the single frame at the corresponding level.
GDB Command
...........
The corresponding GDB commands are `backtrace' and `where'.
Example
.......
Full stack backtrace:
(gdb)
-stack-list-frames
^done,stack=
[frame={level="0",addr="0x0001076c",func="foo",
file="recursive2.c",line="11"},
frame={level="1",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="2",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="3",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="4",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="5",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="6",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="7",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="8",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="9",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="10",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="11",addr="0x00010738",func="main",
file="recursive2.c",line="4"}]
(gdb)
Show frames between LOW_FRAME and HIGH_FRAME:
(gdb)
-stack-list-frames 3 5
^done,stack=
[frame={level="3",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="4",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="5",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"}]
(gdb)
Show a single frame:
(gdb)
-stack-list-frames 3 3
^done,stack=
[frame={level="3",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"}]
(gdb)
The `-stack-list-locals' Command
--------------------------------
Synopsis
........
-stack-list-locals PRINT-VALUES
Display the local variable names for the current frame. With an
argument of 0 or `--no-values', prints only the names of the variables.
With argument of 1 or `--all-values', prints also their values. With
argument of 2 or `--simple-values', prints the name, type and value for
simple data types and the name and type for arrays, structures and
unions. In this last case, the idea is that the user can see the value
of simple data types immediately and he can create variable objects for
other data types if he wishes to explore their values in more detail.
GDB Command
...........
`info locals' in GDB, `gdb_get_locals' in `gdbtk'.
Example
.......
(gdb)
-stack-list-locals 0
^done,locals=[name="A",name="B",name="C"]
(gdb)
-stack-list-locals --all-values
^done,locals=[{name="A",value="1"},{name="B",value="2"},
{name="C",value="{1, 2, 3}"}]
-stack-list-locals --simple-values
^done,locals=[{name="A",type="int",value="1"},
{name="B",type="int",value="2"},{name="C",type="int [3]"}]
(gdb)
The `-stack-select-frame' Command
---------------------------------
Synopsis
........
-stack-select-frame FRAMENUM
Change the current frame. Select a different frame FRAMENUM on the
stack.
GDB Command
...........
The corresponding GDB commands are `frame', `up', `down',
`select-frame', `up-silent', and `down-silent'.
Example
.......
(gdb)
-stack-select-frame 2
^done
(gdb)
File: gdb.info, Node: GDB/MI Symbol Query, Next: GDB/MI Target Manipulation, Prev: GDB/MI Stack Manipulation, Up: GDB/MI
24.10 GDB/MI Symbol Query Commands
==================================
The `-symbol-info-address' Command
----------------------------------
Synopsis
........
-symbol-info-address SYMBOL
Describe where SYMBOL is stored.
GDB Command
...........
The corresponding GDB command is `info address'.
Example
.......
N.A.
The `-symbol-info-file' Command
-------------------------------
Synopsis
........
-symbol-info-file
Show the file for the symbol.
GDB Command
...........
There's no equivalent GDB command. `gdbtk' has `gdb_find_file'.
Example
.......
N.A.
The `-symbol-info-function' Command
-----------------------------------
Synopsis
........
-symbol-info-function
Show which function the symbol lives in.
GDB Command
...........
`gdb_get_function' in `gdbtk'.
Example
.......
N.A.
The `-symbol-info-line' Command
-------------------------------
Synopsis
........
-symbol-info-line
Show the core addresses of the code for a source line.
GDB Command
...........
The corresponding GDB command is `info line'. `gdbtk' has the
`gdb_get_line' and `gdb_get_file' commands.
Example
.......
N.A.
The `-symbol-info-symbol' Command
---------------------------------
Synopsis
........
-symbol-info-symbol ADDR
Describe what symbol is at location ADDR.
GDB Command
...........
The corresponding GDB command is `info symbol'.
Example
.......
N.A.
The `-symbol-list-functions' Command
------------------------------------
Synopsis
........
-symbol-list-functions
List the functions in the executable.
GDB Command
...........
`info functions' in GDB, `gdb_listfunc' and `gdb_search' in `gdbtk'.
Example
.......
N.A.
The `-symbol-list-lines' Command
--------------------------------
Synopsis
........
-symbol-list-lines FILENAME
Print the list of lines that contain code and their associated
program addresses for the given source filename. The entries are
sorted in ascending PC order.
GDB Command
...........
There is no corresponding GDB command.
Example
.......
(gdb)
-symbol-list-lines basics.c
^done,lines=[{pc="0x08048554",line="7"},{pc="0x0804855a",line="8"}]
(gdb)
The `-symbol-list-types' Command
--------------------------------
Synopsis
........
-symbol-list-types
List all the type names.
GDB Command
...........
The corresponding commands are `info types' in GDB, `gdb_search' in
`gdbtk'.
Example
.......
N.A.
The `-symbol-list-variables' Command
------------------------------------
Synopsis
........
-symbol-list-variables
List all the global and static variable names.
GDB Command
...........
`info variables' in GDB, `gdb_search' in `gdbtk'.
Example
.......
N.A.
The `-symbol-locate' Command
----------------------------
Synopsis
........
-symbol-locate
GDB Command
...........
`gdb_loc' in `gdbtk'.
Example
.......
N.A.
The `-symbol-type' Command
--------------------------
Synopsis
........
-symbol-type VARIABLE
Show type of VARIABLE.
GDB Command
...........
The corresponding GDB command is `ptype', `gdbtk' has
`gdb_obj_variable'.
Example
.......
N.A.
File: gdb.info, Node: GDB/MI Target Manipulation, Next: GDB/MI Thread Commands, Prev: GDB/MI Symbol Query, Up: GDB/MI
24.11 GDB/MI Target Manipulation Commands
=========================================
The `-target-attach' Command
----------------------------
Synopsis
........
-target-attach PID | FILE
Attach to a process PID or a file FILE outside of GDB.
GDB command
...........
The corresponding GDB command is `attach'.
Example
.......
N.A.
The `-target-compare-sections' Command
--------------------------------------
Synopsis
........
-target-compare-sections [ SECTION ]
Compare data of section SECTION on target to the exec file. Without
the argument, all sections are compared.
GDB Command
...........
The GDB equivalent is `compare-sections'.
Example
.......
N.A.
The `-target-detach' Command
----------------------------
Synopsis
........
-target-detach
Disconnect from the remote target. There's no output.
GDB command
...........
The corresponding GDB command is `detach'.
Example
.......
(gdb)
-target-detach
^done
(gdb)
The `-target-disconnect' Command
--------------------------------
Synopsis
........
-target-disconnect
Disconnect from the remote target. There's no output.
GDB command
...........
The corresponding GDB command is `disconnect'.
Example
.......
(gdb)
-target-disconnect
^done
(gdb)
The `-target-download' Command
------------------------------
Synopsis
........
-target-download
Loads the executable onto the remote target. It prints out an
update message every half second, which includes the fields:
`section'
The name of the section.
`section-sent'
The size of what has been sent so far for that section.
`section-size'
The size of the section.
`total-sent'
The total size of what was sent so far (the current and the
previous sections).
`total-size'
The size of the overall executable to download.
Each message is sent as status record (*note GDB/MI Output Syntax:
GDB/MI Output Syntax.).
In addition, it prints the name and size of the sections, as they are
downloaded. These messages include the following fields:
`section'
The name of the section.
`section-size'
The size of the section.
`total-size'
The size of the overall executable to download.
At the end, a summary is printed.
GDB Command
...........
The corresponding GDB command is `load'.
Example
.......
Note: each status message appears on a single line. Here the messages
have been broken down so that they can fit onto a page.
(gdb)
-target-download
+download,{section=".text",section-size="6668",total-size="9880"}
+download,{section=".text",section-sent="512",section-size="6668",
total-sent="512",total-size="9880"}
+download,{section=".text",section-sent="1024",section-size="6668",
total-sent="1024",total-size="9880"}
+download,{section=".text",section-sent="1536",section-size="6668",
total-sent="1536",total-size="9880"}
+download,{section=".text",section-sent="2048",section-size="6668",
total-sent="2048",total-size="9880"}
+download,{section=".text",section-sent="2560",section-size="6668",
total-sent="2560",total-size="9880"}
+download,{section=".text",section-sent="3072",section-size="6668",
total-sent="3072",total-size="9880"}
+download,{section=".text",section-sent="3584",section-size="6668",
total-sent="3584",total-size="9880"}
+download,{section=".text",section-sent="4096",section-size="6668",
total-sent="4096",total-size="9880"}
+download,{section=".text",section-sent="4608",section-size="6668",
total-sent="4608",total-size="9880"}
+download,{section=".text",section-sent="5120",section-size="6668",
total-sent="5120",total-size="9880"}
+download,{section=".text",section-sent="5632",section-size="6668",
total-sent="5632",total-size="9880"}
+download,{section=".text",section-sent="6144",section-size="6668",
total-sent="6144",total-size="9880"}
+download,{section=".text",section-sent="6656",section-size="6668",
total-sent="6656",total-size="9880"}
+download,{section=".init",section-size="28",total-size="9880"}
+download,{section=".fini",section-size="28",total-size="9880"}
+download,{section=".data",section-size="3156",total-size="9880"}
+download,{section=".data",section-sent="512",section-size="3156",
total-sent="7236",total-size="9880"}
+download,{section=".data",section-sent="1024",section-size="3156",
total-sent="7748",total-size="9880"}
+download,{section=".data",section-sent="1536",section-size="3156",
total-sent="8260",total-size="9880"}
+download,{section=".data",section-sent="2048",section-size="3156",
total-sent="8772",total-size="9880"}
+download,{section=".data",section-sent="2560",section-size="3156",
total-sent="9284",total-size="9880"}
+download,{section=".data",section-sent="3072",section-size="3156",
total-sent="9796",total-size="9880"}
^done,address="0x10004",load-size="9880",transfer-rate="6586",
write-rate="429"
(gdb)
The `-target-exec-status' Command
---------------------------------
Synopsis
........
-target-exec-status
Provide information on the state of the target (whether it is
running or not, for instance).
GDB Command
...........
There's no equivalent GDB command.
Example
.......
N.A.
The `-target-list-available-targets' Command
--------------------------------------------
Synopsis
........
-target-list-available-targets
List the possible targets to connect to.
GDB Command
...........
The corresponding GDB command is `help target'.
Example
.......
N.A.
The `-target-list-current-targets' Command
------------------------------------------
Synopsis
........
-target-list-current-targets
Describe the current target.
GDB Command
...........
The corresponding information is printed by `info file' (among other
things).
Example
.......
N.A.
The `-target-list-parameters' Command
-------------------------------------
Synopsis
........
-target-list-parameters
GDB Command
...........
No equivalent.
Example
.......
N.A.
The `-target-select' Command
----------------------------
Synopsis
........
-target-select TYPE PARAMETERS ...
Connect GDB to the remote target. This command takes two args:
`TYPE'
The type of target, for instance `async', `remote', etc.
`PARAMETERS'
Device names, host names and the like. *Note Commands for
managing targets: Target Commands, for more details.
The output is a connection notification, followed by the address at
which the target program is, in the following form:
^connected,addr="ADDRESS",func="FUNCTION NAME",
args=[ARG LIST]
GDB Command
...........
The corresponding GDB command is `target'.
Example
.......
(gdb)
-target-select async /dev/ttya
^connected,addr="0xfe00a300",func="??",args=[]
(gdb)
File: gdb.info, Node: GDB/MI Thread Commands, Next: GDB/MI Tracepoint Commands, Prev: GDB/MI Target Manipulation, Up: GDB/MI
24.12 GDB/MI Thread Commands
============================
The `-thread-info' Command
--------------------------
Synopsis
........
-thread-info
GDB command
...........
No equivalent.
Example
.......
N.A.
The `-thread-list-all-threads' Command
--------------------------------------
Synopsis
........
-thread-list-all-threads
GDB Command
...........
The equivalent GDB command is `info threads'.
Example
.......
N.A.
The `-thread-list-ids' Command
------------------------------
Synopsis
........
-thread-list-ids
Produces a list of the currently known GDB thread ids. At the end
of the list it also prints the total number of such threads.
GDB Command
...........
Part of `info threads' supplies the same information.
Example
.......
No threads present, besides the main process:
(gdb)
-thread-list-ids
^done,thread-ids={},number-of-threads="0"
(gdb)
Several threads:
(gdb)
-thread-list-ids
^done,thread-ids={thread-id="3",thread-id="2",thread-id="1"},
number-of-threads="3"
(gdb)
The `-thread-select' Command
----------------------------
Synopsis
........
-thread-select THREADNUM
Make THREADNUM the current thread. It prints the number of the new
current thread, and the topmost frame for that thread.
GDB Command
...........
The corresponding GDB command is `thread'.
Example
.......
(gdb)
-exec-next
^running
(gdb)
*stopped,reason="end-stepping-range",thread-id="2",line="187",
file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
(gdb)
-thread-list-ids
^done,
thread-ids={thread-id="3",thread-id="2",thread-id="1"},
number-of-threads="3"
(gdb)
-thread-select 3
^done,new-thread-id="3",
frame={level="0",func="vprintf",
args=[{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""},
{name="arg",value="0x2"}],file="vprintf.c",line="31"}
(gdb)
File: gdb.info, Node: GDB/MI Tracepoint Commands, Next: GDB/MI Variable Objects, Prev: GDB/MI Thread Commands, Up: GDB/MI
24.13 GDB/MI Tracepoint Commands
================================
The tracepoint commands are not yet implemented.
File: gdb.info, Node: GDB/MI Variable Objects, Prev: GDB/MI Tracepoint Commands, Up: GDB/MI
24.14 GDB/MI Variable Objects
=============================
Motivation for Variable Objects in GDB/MI
-----------------------------------------
For the implementation of a variable debugger window (locals, watched
expressions, etc.), we are proposing the adaptation of the existing code
used by `Insight'.
The two main reasons for that are:
1. It has been proven in practice (it is already on its second
generation).
2. It will shorten development time (needless to say how important it
is now).
The original interface was designed to be used by Tcl code, so it was
slightly changed so it could be used through GDB/MI. This section
describes the GDB/MI operations that will be available and gives some
hints about their use.
_Note_: In addition to the set of operations described here, we
expect the GUI implementation of a variable window to require, at
least, the following operations:
* `-gdb-show' `output-radix'
* `-stack-list-arguments'
* `-stack-list-locals'
* `-stack-select-frame'
Introduction to Variable Objects in GDB/MI
------------------------------------------
The basic idea behind variable objects is the creation of a named object
to represent a variable, an expression, a memory location or even a CPU
register. For each object created, a set of operations is available for
examining or changing its properties.
Furthermore, complex data types, such as C structures, are
represented in a tree format. For instance, the `struct' type variable
is the root and the children will represent the struct members. If a
child is itself of a complex type, it will also have children of its
own. Appropriate language differences are handled for C, C++ and Java.
When returning the actual values of the objects, this facility allows
for the individual selection of the display format used in the result
creation. It can be chosen among: binary, decimal, hexadecimal, octal
and natural. Natural refers to a default format automatically chosen
based on the variable type (like decimal for an `int', hex for
pointers, etc.).
The following is the complete set of GDB/MI operations defined to
access this functionality:
*Operation* *Description*
`-var-create' create a variable object
`-var-delete' delete the variable object and its children
`-var-set-format' set the display format of this variable
`-var-show-format' show the display format of this variable
`-var-info-num-children' tells how many children this object has
`-var-list-children' return a list of the object's children
`-var-info-type' show the type of this variable object
`-var-info-expression' print what this variable object represents
`-var-show-attributes' is this variable editable? does it exist
here?
`-var-evaluate-expression' get the value of this variable
`-var-assign' set the value of this variable
`-var-update' update the variable and its children
In the next subsection we describe each operation in detail and
suggest how it can be used.
Description And Use of Operations on Variable Objects
-----------------------------------------------------
The `-var-create' Command
-------------------------
Synopsis
........
-var-create {NAME | "-"}
{FRAME-ADDR | "*"} EXPRESSION
This operation creates a variable object, which allows the
monitoring of a variable, the result of an expression, a memory cell or
a CPU register.
The NAME parameter is the string by which the object can be
referenced. It must be unique. If `-' is specified, the varobj system
will generate a string "varNNNNNN" automatically. It will be unique
provided that one does not specify NAME on that format. The command
fails if a duplicate name is found.
The frame under which the expression should be evaluated can be
specified by FRAME-ADDR. A `*' indicates that the current frame should
be used.
EXPRESSION is any expression valid on the current language set (must
not begin with a `*'), or one of the following:
* `*ADDR', where ADDR is the address of a memory cell
* `*ADDR-ADDR' -- a memory address range (TBD)
* `$REGNAME' -- a CPU register name
Result
......
This operation returns the name, number of children and the type of the
object created. Type is returned as a string as the ones generated by
the GDB CLI:
name="NAME",numchild="N",type="TYPE"
The `-var-delete' Command
-------------------------
Synopsis
........
-var-delete NAME
Deletes a previously created variable object and all of its children.
Returns an error if the object NAME is not found.
The `-var-set-format' Command
-----------------------------
Synopsis
........
-var-set-format NAME FORMAT-SPEC
Sets the output format for the value of the object NAME to be
FORMAT-SPEC.
The syntax for the FORMAT-SPEC is as follows:
FORMAT-SPEC ==>
{binary | decimal | hexadecimal | octal | natural}
The `-var-show-format' Command
------------------------------
Synopsis
........
-var-show-format NAME
Returns the format used to display the value of the object NAME.
FORMAT ==>
FORMAT-SPEC
The `-var-info-num-children' Command
------------------------------------
Synopsis
........
-var-info-num-children NAME
Returns the number of children of a variable object NAME:
numchild=N
The `-var-list-children' Command
--------------------------------
Synopsis
........
-var-list-children [PRINT-VALUES] NAME
Returns a list of the children of the specified variable object.
With just the variable object name as an argument or with an optional
preceding argument of 0 or `--no-values', prints only the names of the
variables. With an optional preceding argument of 1 or `--all-values',
also prints their values.
Example
.......
(gdb)
-var-list-children n
numchild=N,children=[{name=NAME,
numchild=N,type=TYPE},(repeats N times)]
(gdb)
-var-list-children --all-values n
numchild=N,children=[{name=NAME,
numchild=N,value=VALUE,type=TYPE},(repeats N times)]
The `-var-info-type' Command
----------------------------
Synopsis
........
-var-info-type NAME
Returns the type of the specified variable NAME. The type is
returned as a string in the same format as it is output by the GDB CLI:
type=TYPENAME
The `-var-info-expression' Command
----------------------------------
Synopsis
........
-var-info-expression NAME
Returns what is represented by the variable object NAME:
lang=LANG-SPEC,exp=EXPRESSION
where LANG-SPEC is `{"C" | "C++" | "Java"}'.
The `-var-show-attributes' Command
----------------------------------
Synopsis
........
-var-show-attributes NAME
List attributes of the specified variable object NAME:
status=ATTR [ ( ,ATTR )* ]
where ATTR is `{ { editable | noneditable } | TBD }'.
The `-var-evaluate-expression' Command
--------------------------------------
Synopsis
........
-var-evaluate-expression NAME
Evaluates the expression that is represented by the specified
variable object and returns its value as a string in the current format
specified for the object:
value=VALUE
Note that one must invoke `-var-list-children' for a variable before
the value of a child variable can be evaluated.
The `-var-assign' Command
-------------------------
Synopsis
........
-var-assign NAME EXPRESSION
Assigns the value of EXPRESSION to the variable object specified by
NAME. The object must be `editable'. If the variable's value is
altered by the assign, the variable will show up in any subsequent
`-var-update' list.
Example
.......
(gdb)
-var-assign var1 3
^done,value="3"
(gdb)
-var-update *
^done,changelist=[{name="var1",in_scope="true",type_changed="false"}]
(gdb)
The `-var-update' Command
-------------------------
Synopsis
........
-var-update {NAME | "*"}
Update the value of the variable object NAME by evaluating its
expression after fetching all the new values from memory or registers.
A `*' causes all existing variable objects to be updated.
File: gdb.info, Node: GDB Bugs, Next: Formatting Documentation, Prev: GDB/MI, Up: Top
26 Reporting Bugs in GDB
************************
Your bug reports play an essential role in making GDB reliable.
Reporting a bug may help you by bringing a solution to your problem,
or it may not. But in any case the principal function of a bug report
is to help the entire community by making the next version of GDB work
better. Bug reports are your contribution to the maintenance of GDB.
In order for a bug report to serve its purpose, you must include the
information that enables us to fix the bug.
* Menu:
* Bug Criteria:: Have you found a bug?
* Bug Reporting:: How to report bugs
File: gdb.info, Node: Bug Criteria, Next: Bug Reporting, Up: GDB Bugs
26.1 Have you found a bug?
==========================
If you are not sure whether you have found a bug, here are some
guidelines:
* If the debugger gets a fatal signal, for any input whatever, that
is a GDB bug. Reliable debuggers never crash.
* If GDB produces an error message for valid input, that is a bug.
(Note that if you're cross debugging, the problem may also be
somewhere in the connection to the target.)
* If GDB does not produce an error message for invalid input, that
is a bug. However, you should note that your idea of "invalid
input" might be our idea of "an extension" or "support for
traditional practice".
* If you are an experienced user of debugging tools, your suggestions
for improvement of GDB are welcome in any case.
File: gdb.info, Node: Bug Reporting, Prev: Bug Criteria, Up: GDB Bugs
26.2 How to report bugs
=======================
A number of companies and individuals offer support for GNU products.
If you obtained GDB from a support organization, we recommend you
contact that organization first.
You can find contact information for many support companies and
individuals in the file `etc/SERVICE' in the GNU Emacs distribution.
In any event, we also recommend that you submit bug reports for GDB.
The prefered method is to submit them directly using GDB's Bugs web
page (http://www.gnu.org/software/gdb/bugs/). Alternatively, the
e-mail gateway <> can be used.
*Do not send bug reports to `info-gdb', or to `help-gdb', or to any
newsgroups.* Most users of GDB do not want to receive bug reports.
Those that do have arranged to receive `bug-gdb'.
The mailing list `bug-gdb' has a newsgroup `gnu.gdb.bug' which
serves as a repeater. The mailing list and the newsgroup carry exactly
the same messages. Often people think of posting bug reports to the
newsgroup instead of mailing them. This appears to work, but it has one
problem which can be crucial: a newsgroup posting often lacks a mail
path back to the sender. Thus, if we need to ask for more information,
we may be unable to reach you. For this reason, it is better to send
bug reports to the mailing list.
The fundamental principle of reporting bugs usefully is this:
*report all the facts*. If you are not sure whether to state a fact or
leave it out, state it!
Often people omit facts because they think they know what causes the
problem and assume that some details do not matter. Thus, you might
assume that the name of the variable you use in an example does not
matter. Well, probably it does not, but one cannot be sure. Perhaps
the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name were
different, the contents of that location would fool the debugger into
doing the right thing despite the bug. Play it safe and give a
specific, complete example. That is the easiest thing for you to do,
and the most helpful.
Keep in mind that the purpose of a bug report is to enable us to fix
the bug. It may be that the bug has been reported previously, but
neither you nor we can know that unless your bug report is complete and
self-contained.
Sometimes people give a few sketchy facts and ask, "Does this ring a
bell?" Those bug reports are useless, and we urge everyone to _refuse
to respond to them_ except to chide the sender to report bugs properly.
To enable us to fix the bug, you should include all these things:
* The version of GDB. GDB announces it if you start with no
arguments; you can also print it at any time using `show version'.
Without this, we will not know whether there is any point in
looking for the bug in the current version of GDB.
* The type of machine you are using, and the operating system name
and version number.
* What compiler (and its version) was used to compile GDB--e.g.
"gcc-2.8.1".
* What compiler (and its version) was used to compile the program
you are debugging--e.g. "gcc-2.8.1", or "HP92453-01 A.10.32.03 HP
C Compiler". For GCC, you can say `gcc --version' to get this
information; for other compilers, see the documentation for those
compilers.
* The command arguments you gave the compiler to compile your
example and observe the bug. For example, did you use `-O'? To
guarantee you will not omit something important, list them all. A
copy of the Makefile (or the output from make) is sufficient.
If we were to try to guess the arguments, we would probably guess
wrong and then we might not encounter the bug.
* A complete input script, and all necessary source files, that will
reproduce the bug.
* A description of what behavior you observe that you believe is
incorrect. For example, "It gets a fatal signal."
Of course, if the bug is that GDB gets a fatal signal, then we
will certainly notice it. But if the bug is incorrect output, we
might not notice unless it is glaringly wrong. You might as well
not give us a chance to make a mistake.
Even if the problem you experience is a fatal signal, you should
still say so explicitly. Suppose something strange is going on,
such as, your copy of GDB is out of synch, or you have encountered
a bug in the C library on your system. (This has happened!) Your
copy might crash and ours would not. If you told us to expect a
crash, then when ours fails to crash, we would know that the bug
was not happening for us. If you had not told us to expect a
crash, then we would not be able to draw any conclusion from our
observations.
To collect all this information, you can use a session recording
program such as `script', which is available on many Unix systems.
Just run your GDB session inside `script' and then include the
`typescript' file with your bug report.
Another way to record a GDB session is to run GDB inside Emacs and
then save the entire buffer to a file.
* If you wish to suggest changes to the GDB source, send us context
diffs. If you even discuss something in the GDB source, refer to
it by context, not by line number.
The line numbers in our development sources will not match those
in your sources. Your line numbers would convey no useful
information to us.
Here are some things that are not necessary:
* A description of the envelope of the bug.
Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.
This is often time consuming and not very useful, because the way
we will find the bug is by running a single example under the
debugger with breakpoints, not by pure deduction from a series of
examples. We recommend that you save your time for something else.
Of course, if you can find a simpler example to report _instead_
of the original one, that is a convenience for us. Errors in the
output will be easier to spot, running under the debugger will take
less time, and so on.
However, simplification is not vital; if you do not want to do
this, report the bug anyway and send us the entire test case you
used.
* A patch for the bug.
A patch for the bug does help us if it is a good one. But do not
omit the necessary information, such as the test case, on the
assumption that a patch is all we need. We might see problems
with your patch and decide to fix the problem another way, or we
might not understand it at all.
Sometimes with a program as complicated as GDB it is very hard to
construct an example that will make the program follow a certain
path through the code. If you do not send us the example, we will
not be able to construct one, so we will not be able to verify
that the bug is fixed.
And if we cannot understand what bug you are trying to fix, or why
your patch should be an improvement, we will not install it. A
test case will help us to understand.
* A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even we cannot guess right about
such things without first using the debugger to find the facts.
File: gdb.info, Node: Formatting Documentation, Next: Command Line Editing, Prev: GDB Bugs, Up: Top
Appendix A Formatting Documentation
***********************************
The GDB 4 release includes an already-formatted reference card, ready
for printing with PostScript or Ghostscript, in the `gdb' subdirectory
of the main source directory(1). If you can use PostScript or
Ghostscript with your printer, you can print the reference card
immediately with `refcard.ps'.
The release also includes the source for the reference card. You
can format it, using TeX, by typing:
make refcard.dvi
The GDB reference card is designed to print in "landscape" mode on
US "letter" size paper; that is, on a sheet 11 inches wide by 8.5 inches
high. You will need to specify this form of printing as an option to
your DVI output program.
All the documentation for GDB comes as part of the machine-readable
distribution. The documentation is written in Texinfo format, which is
a documentation system that uses a single source file to produce both
on-line information and a printed manual. You can use one of the Info
formatting commands to create the on-line version of the documentation
and TeX (or `texi2roff') to typeset the printed version.
GDB includes an already formatted copy of the on-line Info version
of this manual in the `gdb' subdirectory. The main Info file is
`gdb-6.3/gdb/gdb.info', and it refers to subordinate files matching
`gdb.info*' in the same directory. If necessary, you can print out
these files, or read them with any editor; but they are easier to read
using the `info' subsystem in GNU Emacs or the standalone `info'
program, available as part of the GNU Texinfo distribution.
If you want to format these Info files yourself, you need one of the
Info formatting programs, such as `texinfo-format-buffer' or `makeinfo'.
If you have `makeinfo' installed, and are in the top level GDB
source directory (`gdb-6.3', in the case of version 6.3), you can make
the Info file by typing:
cd gdb
make gdb.info
If you want to typeset and print copies of this manual, you need TeX,
a program to print its DVI output files, and `texinfo.tex', the Texinfo
definitions file.
TeX is a typesetting program; it does not print files directly, but
produces output files called DVI files. To print a typeset document,
you need a program to print DVI files. If your system has TeX
installed, chances are it has such a program. The precise command to
use depends on your system; `lpr -d' is common; another (for PostScript
devices) is `dvips'. The DVI print command may require a file name
without any extension or a `.dvi' extension.
TeX also requires a macro definitions file called `texinfo.tex'.
This file tells TeX how to typeset a document written in Texinfo
format. On its own, TeX cannot either read or typeset a Texinfo file.
`texinfo.tex' is distributed with GDB and is located in the
`gdb-VERSION-NUMBER/texinfo' directory.
If you have TeX and a DVI printer program installed, you can typeset
and print this manual. First switch to the the `gdb' subdirectory of
the main source directory (for example, to `gdb-6.3/gdb') and type:
make gdb.dvi
Then give `gdb.dvi' to your DVI printing program.
---------- Footnotes ----------
(1) In `gdb-6.3/gdb/refcard.ps' of the version 6.3 release.
File: gdb.info, Node: Command Line Editing, Next: Using History Interactively, Prev: Formatting Documentation, Up: Top
27 Command Line Editing
***********************
This chapter describes the basic features of the GNU command line
editing interface.
* Menu:
* Introduction and Notation:: Notation used in this text.
* Readline Interaction:: The minimum set of commands for editing a line.
* Readline Init File:: Customizing Readline from a user's view.
* Bindable Readline Commands:: A description of most of the Readline commands
available for binding
* Readline vi Mode:: A short description of how to make Readline
behave like the vi editor.
File: gdb.info, Node: Introduction and Notation, Next: Readline Interaction, Up: Command Line Editing
27.1 Introduction to Line Editing
=================================
The following paragraphs describe the notation used to represent
keystrokes.
The text `C-k' is read as `Control-K' and describes the character
produced when the key is pressed while the Control key is depressed.
The text `M-k' is read as `Meta-K' and describes the character
produced when the Meta key (if you have one) is depressed, and the
key is pressed. The Meta key is labeled on many keyboards. On
keyboards with two keys labeled (usually to either side of the
space bar), the on the left side is generally set to work as a
Meta key. The key on the right may also be configured to work as
a Meta key or may be configured as some other modifier, such as a
Compose key for typing accented characters.
If you do not have a Meta or key, or another key working as a
Meta key, the identical keystroke can be generated by typing
_first_, and then typing . Either process is known as "metafying"
the key.
The text `M-C-k' is read as `Meta-Control-k' and describes the
character produced by "metafying" `C-k'.
In addition, several keys have their own names. Specifically,
, , , , , and all stand for themselves
when seen in this text, or in an init file (*note Readline Init File::).
If your keyboard lacks a key, typing will produce the
desired character. The key may be labeled or on
some keyboards.
File: gdb.info, Node: Readline Interaction, Next: Readline Init File, Prev: Introduction and Notation, Up: Command Line Editing
27.2 Readline Interaction
=========================
Often during an interactive session you type in a long line of text,
only to notice that the first word on the line is misspelled. The
Readline library gives you a set of commands for manipulating the text
as you type it in, allowing you to just fix your typo, and not forcing
you to retype the majority of the line. Using these editing commands,
you move the cursor to the place that needs correction, and delete or
insert the text of the corrections. Then, when you are satisfied with
the line, you simply press . You do not have to be at the end of
the line to press ; the entire line is accepted regardless of the
location of the cursor within the line.
* Menu:
* Readline Bare Essentials:: The least you need to know about Readline.
* Readline Movement Commands:: Moving about the input line.
* Readline Killing Commands:: How to delete text, and how to get it back!
* Readline Arguments:: Giving numeric arguments to commands.
* Searching:: Searching through previous lines.
File: gdb.info, Node: Readline Bare Essentials, Next: Readline Movement Commands, Up: Readline Interaction
27.2.1 Readline Bare Essentials
-------------------------------
In order to enter characters into the line, simply type them. The typed
character appears where the cursor was, and then the cursor moves one
space to the right. If you mistype a character, you can use your erase
character to back up and delete the mistyped character.
Sometimes you may mistype a character, and not notice the error
until you have typed several other characters. In that case, you can
type `C-b' to move the cursor to the left, and then correct your
mistake. Afterwards, you can move the cursor to the right with `C-f'.
When you add text in the middle of a line, you will notice that
characters to the right of the cursor are `pushed over' to make room
for the text that you have inserted. Likewise, when you delete text
behind the cursor, characters to the right of the cursor are `pulled
back' to fill in the blank space created by the removal of the text. A
list of the bare essentials for editing the text of an input line
follows.
`C-b'
Move back one character.
`C-f'
Move forward one character.
or
Delete the character to the left of the cursor.
`C-d'
Delete the character underneath the cursor.
Printing characters
Insert the character into the line at the cursor.
`C-_' or `C-x C-u'
Undo the last editing command. You can undo all the way back to an
empty line.
(Depending on your configuration, the key be set to delete
the character to the left of the cursor and the key set to delete
the character underneath the cursor, like `C-d', rather than the
character to the left of the cursor.)
File: gdb.info, Node: Readline Movement Commands, Next: Readline Killing Commands, Prev: Readline Bare Essentials, Up: Readline Interaction
27.2.2 Readline Movement Commands
---------------------------------
The above table describes the most basic keystrokes that you need in
order to do editing of the input line. For your convenience, many
other commands have been added in addition to `C-b', `C-f', `C-d', and
. Here are some commands for moving more rapidly about the line.
`C-a'
Move to the start of the line.
`C-e'
Move to the end of the line.
`M-f'
Move forward a word, where a word is composed of letters and
digits.
`M-b'
Move backward a word.
`C-l'
Clear the screen, reprinting the current line at the top.
Notice how `C-f' moves forward a character, while `M-f' moves
forward a word. It is a loose convention that control keystrokes
operate on characters while meta keystrokes operate on words.
File: gdb.info, Node: Readline Killing Commands, Next: Readline Arguments, Prev: Readline Movement Commands, Up: Readline Interaction
27.2.3 Readline Killing Commands
--------------------------------
"Killing" text means to delete the text from the line, but to save it
away for later use, usually by "yanking" (re-inserting) it back into
the line. (`Cut' and `paste' are more recent jargon for `kill' and
`yank'.)
If the description for a command says that it `kills' text, then you
can be sure that you can get the text back in a different (or the same)
place later.
When you use a kill command, the text is saved in a "kill-ring".
Any number of consecutive kills save all of the killed text together, so
that when you yank it back, you get it all. The kill ring is not line
specific; the text that you killed on a previously typed line is
available to be yanked back later, when you are typing another line.
Here is the list of commands for killing text.
`C-k'
Kill the text from the current cursor position to the end of the
line.
`M-d'
Kill from the cursor to the end of the current word, or, if between
words, to the end of the next word. Word boundaries are the same
as those used by `M-f'.
`M-'
Kill from the cursor the start of the current word, or, if between
words, to the start of the previous word. Word boundaries are the
same as those used by `M-b'.
`C-w'
Kill from the cursor to the previous whitespace. This is
different than `M-' because the word boundaries differ.
Here is how to "yank" the text back into the line. Yanking means to
copy the most-recently-killed text from the kill buffer.
`C-y'
Yank the most recently killed text back into the buffer at the
cursor.
`M-y'
Rotate the kill-ring, and yank the new top. You can only do this
if the prior command is `C-y' or `M-y'.
File: gdb.info, Node: Readline Arguments, Next: Searching, Prev: Readline Killing Commands, Up: Readline Interaction
27.2.4 Readline Arguments
-------------------------
You can pass numeric arguments to Readline commands. Sometimes the
argument acts as a repeat count, other times it is the sign of the
argument that is significant. If you pass a negative argument to a
command which normally acts in a forward direction, that command will
act in a backward direction. For example, to kill text back to the
start of the line, you might type `M-- C-k'.
The general way to pass numeric arguments to a command is to type
meta digits before the command. If the first `digit' typed is a minus
sign (`-'), then the sign of the argument will be negative. Once you
have typed one meta digit to get the argument started, you can type the
remainder of the digits, and then the command. For example, to give
the `C-d' command an argument of 10, you could type `M-1 0 C-d', which
will delete the next ten characters on the input line.
File: gdb.info, Node: Searching, Prev: Readline Arguments, Up: Readline Interaction
27.2.5 Searching for Commands in the History
--------------------------------------------
Readline provides commands for searching through the command history
for lines containing a specified string. There are two search modes:
"incremental" and "non-incremental".
Incremental searches begin before the user has finished typing the
search string. As each character of the search string is typed,
Readline displays the next entry from the history matching the string
typed so far. An incremental search requires only as many characters
as needed to find the desired history entry. To search backward in the
history for a particular string, type `C-r'. Typing `C-s' searches
forward through the history. The characters present in the value of
the `isearch-terminators' variable are used to terminate an incremental
search. If that variable has not been assigned a value, the and
`C-J' characters will terminate an incremental search. `C-g' will
abort an incremental search and restore the original line. When the
search is terminated, the history entry containing the search string
becomes the current line.
To find other matching entries in the history list, type `C-r' or
`C-s' as appropriate. This will search backward or forward in the
history for the next entry matching the search string typed so far.
Any other key sequence bound to a Readline command will terminate the
search and execute that command. For instance, a will terminate
the search and accept the line, thereby executing the command from the
history list. A movement command will terminate the search, make the
last line found the current line, and begin editing.
Readline remembers the last incremental search string. If two
`C-r's are typed without any intervening characters defining a new
search string, any remembered search string is used.
Non-incremental searches read the entire search string before
starting to search for matching history lines. The search string may be
typed by the user or be part of the contents of the current line.
File: gdb.info, Node: Readline Init File, Next: Bindable Readline Commands, Prev: Readline Interaction, Up: Command Line Editing
27.3 Readline Init File
=======================
Although the Readline library comes with a set of Emacs-like
keybindings installed by default, it is possible to use a different set
of keybindings. Any user can customize programs that use Readline by
putting commands in an "inputrc" file, conventionally in his home
directory. The name of this file is taken from the value of the
environment variable `INPUTRC'. If that variable is unset, the default
is `~/.inputrc'.
When a program which uses the Readline library starts up, the init
file is read, and the key bindings are set.
In addition, the `C-x C-r' command re-reads this init file, thus
incorporating any changes that you might have made to it.
* Menu:
* Readline Init File Syntax:: Syntax for the commands in the inputrc file.
* Conditional Init Constructs:: Conditional key bindings in the inputrc file.
* Sample Init File:: An example inputrc file.
File: gdb.info, Node: Readline Init File Syntax, Next: Conditional Init Constructs, Up: Readline Init File
27.3.1 Readline Init File Syntax
--------------------------------
There are only a few basic constructs allowed in the Readline init
file. Blank lines are ignored. Lines beginning with a `#' are
comments. Lines beginning with a `$' indicate conditional constructs
(*note Conditional Init Constructs::). Other lines denote variable
settings and key bindings.
Variable Settings
You can modify the run-time behavior of Readline by altering the
values of variables in Readline using the `set' command within the
init file. The syntax is simple:
set VARIABLE VALUE
Here, for example, is how to change from the default Emacs-like
key binding to use `vi' line editing commands:
set editing-mode vi
Variable names and values, where appropriate, are recognized
without regard to case.
A great deal of run-time behavior is changeable with the following
variables.
`bell-style'
Controls what happens when Readline wants to ring the
terminal bell. If set to `none', Readline never rings the
bell. If set to `visible', Readline uses a visible bell if
one is available. If set to `audible' (the default),
Readline attempts to ring the terminal's bell.
`comment-begin'
The string to insert at the beginning of the line when the
`insert-comment' command is executed. The default value is
`"#"'.
`completion-ignore-case'
If set to `on', Readline performs filename matching and
completion in a case-insensitive fashion. The default value
is `off'.
`completion-query-items'
The number of possible completions that determines when the
user is asked whether he wants to see the list of
possibilities. If the number of possible completions is
greater than this value, Readline will ask the user whether
or not he wishes to view them; otherwise, they are simply
listed. This variable must be set to an integer value
greater than or equal to 0. The default limit is `100'.
`convert-meta'
If set to `on', Readline will convert characters with the
eighth bit set to an ASCII key sequence by stripping the
eighth bit and prefixing an character, converting them
to a meta-prefixed key sequence. The default value is `on'.
`disable-completion'
If set to `On', Readline will inhibit word completion.
Completion characters will be inserted into the line as if
they had been mapped to `self-insert'. The default is `off'.
`editing-mode'
The `editing-mode' variable controls which default set of key
bindings is used. By default, Readline starts up in Emacs
editing mode, where the keystrokes are most similar to Emacs.
This variable can be set to either `emacs' or `vi'.
`enable-keypad'
When set to `on', Readline will try to enable the application
keypad when it is called. Some systems need this to enable
the arrow keys. The default is `off'.
`expand-tilde'
If set to `on', tilde expansion is performed when Readline
attempts word completion. The default is `off'.
If set to `on', the history code attempts to place point at
the same location on each history line retrived with
`previous-history' or `next-history'.
`horizontal-scroll-mode'
This variable can be set to either `on' or `off'. Setting it
to `on' means that the text of the lines being edited will
scroll horizontally on a single screen line when they are
longer than the width of the screen, instead of wrapping onto
a new screen line. By default, this variable is set to `off'.
`input-meta'
If set to `on', Readline will enable eight-bit input (it will
not clear the eighth bit in the characters it reads),
regardless of what the terminal claims it can support. The
default value is `off'. The name `meta-flag' is a synonym
for this variable.
`isearch-terminators'
The string of characters that should terminate an incremental
search without subsequently executing the character as a
command (*note Searching::). If this variable has not been
given a value, the characters and `C-J' will terminate
an incremental search.
`keymap'
Sets Readline's idea of the current keymap for key binding
commands. Acceptable `keymap' names are `emacs',
`emacs-standard', `emacs-meta', `emacs-ctlx', `vi', `vi-move',
`vi-command', and `vi-insert'. `vi' is equivalent to
`vi-command'; `emacs' is equivalent to `emacs-standard'. The
default value is `emacs'. The value of the `editing-mode'
variable also affects the default keymap.
`mark-directories'
If set to `on', completed directory names have a slash
appended. The default is `on'.
`mark-modified-lines'
This variable, when set to `on', causes Readline to display an
asterisk (`*') at the start of history lines which have been
modified. This variable is `off' by default.
`mark-symlinked-directories'
If set to `on', completed names which are symbolic links to
directories have a slash appended (subject to the value of
`mark-directories'). The default is `off'.
`match-hidden-files'
This variable, when set to `on', causes Readline to match
files whose names begin with a `.' (hidden files) when
performing filename completion, unless the leading `.' is
supplied by the user in the filename to be completed. This
variable is `on' by default.
`output-meta'
If set to `on', Readline will display characters with the
eighth bit set directly rather than as a meta-prefixed escape
sequence. The default is `off'.
`page-completions'
If set to `on', Readline uses an internal `more'-like pager
to display a screenful of possible completions at a time.
This variable is `on' by default.
`print-completions-horizontally'
If set to `on', Readline will display completions with matches
sorted horizontally in alphabetical order, rather than down
the screen. The default is `off'.
`show-all-if-ambiguous'
This alters the default behavior of the completion functions.
If set to `on', words which have more than one possible
completion cause the matches to be listed immediately instead
of ringing the bell. The default value is `off'.
`visible-stats'
If set to `on', a character denoting a file's type is
appended to the filename when listing possible completions.
The default is `off'.
Key Bindings
The syntax for controlling key bindings in the init file is
simple. First you need to find the name of the command that you
want to change. The following sections contain tables of the
command name, the default keybinding, if any, and a short
description of what the command does.
Once you know the name of the command, simply place on a line in
the init file the name of the key you wish to bind the command to,
a colon, and then the name of the command. The name of the key
can be expressed in different ways, depending on what you find most
comfortable.
In addition to command names, readline allows keys to be bound to
a string that is inserted when the key is pressed (a MACRO).
KEYNAME: FUNCTION-NAME or MACRO
KEYNAME is the name of a key spelled out in English. For
example:
Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: "> output"
In the above example, `C-u' is bound to the function
`universal-argument', `M-DEL' is bound to the function
`backward-kill-word', and `C-o' is bound to run the macro
expressed on the right hand side (that is, to insert the text
`> output' into the line).
A number of symbolic character names are recognized while
processing this key binding syntax: DEL, ESC, ESCAPE, LFD,
NEWLINE, RET, RETURN, RUBOUT, SPACE, SPC, and TAB.
"KEYSEQ": FUNCTION-NAME or MACRO
KEYSEQ differs from KEYNAME above in that strings denoting an
entire key sequence can be specified, by placing the key
sequence in double quotes. Some GNU Emacs style key escapes
can be used, as in the following example, but the special
character names are not recognized.
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
"\e[11~": "Function Key 1"
In the above example, `C-u' is again bound to the function
`universal-argument' (just as it was in the first example),
`C-x C-r' is bound to the function `re-read-init-file', and
` <[> <1> <1> <~>' is bound to insert the text `Function
Key 1'.
The following GNU Emacs style escape sequences are available when
specifying key sequences:
`\C-'
control prefix
`\M-'
meta prefix
`\e'
an escape character
`\\'
backslash
`\"'
<">, a double quotation mark
`\''
<'>, a single quote or apostrophe
In addition to the GNU Emacs style escape sequences, a second set
of backslash escapes is available:
`\a'
alert (bell)
`\b'
backspace
`\d'
delete
`\f'
form feed
`\n'
newline
`\r'
carriage return
`\t'
horizontal tab
`\v'
vertical tab
`\NNN'
the eight-bit character whose value is the octal value NNN
(one to three digits)
`\xHH'
the eight-bit character whose value is the hexadecimal value
HH (one or two hex digits)
When entering the text of a macro, single or double quotes must be
used to indicate a macro definition. Unquoted text is assumed to
be a function name. In the macro body, the backslash escapes
described above are expanded. Backslash will quote any other
character in the macro text, including `"' and `''. For example,
the following binding will make `C-x \' insert a single `\' into
the line:
"\C-x\\": "\\"
File: gdb.info, Node: Conditional Init Constructs, Next: Sample Init File, Prev: Readline Init File Syntax, Up: Readline Init File
27.3.2 Conditional Init Constructs
----------------------------------
Readline implements a facility similar in spirit to the conditional
compilation features of the C preprocessor which allows key bindings
and variable settings to be performed as the result of tests. There
are four parser directives used.
`$if'
The `$if' construct allows bindings to be made based on the
editing mode, the terminal being used, or the application using
Readline. The text of the test extends to the end of the line; no
characters are required to isolate it.
`mode'
The `mode=' form of the `$if' directive is used to test
whether Readline is in `emacs' or `vi' mode. This may be
used in conjunction with the `set keymap' command, for
instance, to set bindings in the `emacs-standard' and
`emacs-ctlx' keymaps only if Readline is starting out in
`emacs' mode.
`term'
The `term=' form may be used to include terminal-specific key
bindings, perhaps to bind the key sequences output by the
terminal's function keys. The word on the right side of the
`=' is tested against both the full name of the terminal and
the portion of the terminal name before the first `-'. This
allows `sun' to match both `sun' and `sun-cmd', for instance.
`application'
The APPLICATION construct is used to include
application-specific settings. Each program using the
Readline library sets the APPLICATION NAME, and you can test
for a particular value. This could be used to bind key
sequences to functions useful for a specific program. For
instance, the following command adds a key sequence that
quotes the current or previous word in Bash:
$if Bash
# Quote the current or previous word
"\C-xq": "\eb\"\ef\""
$endif
`$endif'
This command, as seen in the previous example, terminates an `$if'
command.
`$else'
Commands in this branch of the `$if' directive are executed if the
test fails.
`$include'
This directive takes a single filename as an argument and reads
commands and bindings from that file. For example, the following
directive reads from `/etc/inputrc':
$include /etc/inputrc
File: gdb.info, Node: Sample Init File, Prev: Conditional Init Constructs, Up: Readline Init File
27.3.3 Sample Init File
-----------------------
Here is an example of an INPUTRC file. This illustrates key binding,
variable assignment, and conditional syntax.
# This file controls the behaviour of line input editing for
# programs that use the GNU Readline library. Existing
# programs include FTP, Bash, and GDB.
#
# You can re-read the inputrc file with C-x C-r.
# Lines beginning with '#' are comments.
#
# First, include any systemwide bindings and variable
# assignments from /etc/Inputrc
$include /etc/Inputrc
#
# Set various bindings for emacs mode.
set editing-mode emacs
$if mode=emacs
Meta-Control-h: backward-kill-word Text after the function name is ignored
#
# Arrow keys in keypad mode
#
#"\M-OD": backward-char
#"\M-OC": forward-char
#"\M-OA": previous-history
#"\M-OB": next-history
#
# Arrow keys in ANSI mode
#
"\M-[D": backward-char
"\M-[C": forward-char
"\M-[A": previous-history
"\M-[B": next-history
#
# Arrow keys in 8 bit keypad mode
#
#"\M-\C-OD": backward-char
#"\M-\C-OC": forward-char
#"\M-\C-OA": previous-history
#"\M-\C-OB": next-history
#
# Arrow keys in 8 bit ANSI mode
#
#"\M-\C-[D": backward-char
#"\M-\C-[C": forward-char
#"\M-\C-[A": previous-history
#"\M-\C-[B": next-history
C-q: quoted-insert
$endif
# An old-style binding. This happens to be the default.
TAB: complete
# Macros that are convenient for shell interaction
$if Bash
# edit the path
"\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"
# prepare to type a quoted word --
# insert open and close double quotes
# and move to just after the open quote
"\C-x\"": "\"\"\C-b"
# insert a backslash (testing backslash escapes
# in sequences and macros)
"\C-x\\": "\\"
# Quote the current or previous word
"\C-xq": "\eb\"\ef\""
# Add a binding to refresh the line, which is unbound
"\C-xr": redraw-current-line
# Edit variable on current line.
"\M-\C-v": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="
$endif
# use a visible bell if one is available
set bell-style visible
# don't strip characters to 7 bits when reading
set input-meta on
# allow iso-latin1 characters to be inserted rather
# than converted to prefix-meta sequences
set convert-meta off
# display characters with the eighth bit set directly
# rather than as meta-prefixed characters
set output-meta on
# if there are more than 150 possible completions for
# a word, ask the user if he wants to see all of them
set completion-query-items 150
# For FTP
$if Ftp
"\C-xg": "get \M-?"
"\C-xt": "put \M-?"
"\M-.": yank-last-arg
$endif
File: gdb.info, Node: Bindable Readline Commands, Next: Readline vi Mode, Prev: Readline Init File, Up: Command Line Editing
27.4 Bindable Readline Commands
===============================
* Menu:
* Commands For Moving:: Moving about the line.
* Commands For History:: Getting at previous lines.
* Commands For Text:: Commands for changing text.
* Commands For Killing:: Commands for killing and yanking.
* Numeric Arguments:: Specifying numeric arguments, repeat counts.
* Commands For Completion:: Getting Readline to do the typing for you.
* Keyboard Macros:: Saving and re-executing typed characters
* Miscellaneous Commands:: Other miscellaneous commands.
This section describes Readline commands that may be bound to key
sequences. Command names without an accompanying key sequence are
unbound by default.
In the following descriptions, "point" refers to the current cursor
position, and "mark" refers to a cursor position saved by the
`set-mark' command. The text between the point and mark is referred to
as the "region".
File: gdb.info, Node: Commands For Moving, Next: Commands For History, Up: Bindable Readline Commands
27.4.1 Commands For Moving
--------------------------
`beginning-of-line (C-a)'
Move to the start of the current line.
`end-of-line (C-e)'
Move to the end of the line.
`forward-char (C-f)'
Move forward a character.
`backward-char (C-b)'
Move back a character.
`forward-word (M-f)'
Move forward to the end of the next word. Words are composed of
letters and digits.
`backward-word (M-b)'
Move back to the start of the current or previous word. Words are
composed of letters and digits.
`clear-screen (C-l)'
Clear the screen and redraw the current line, leaving the current
line at the top of the screen.
`redraw-current-line ()'
Refresh the current line. By default, this is unbound.
File: gdb.info, Node: Commands For History, Next: Commands For Text, Prev: Commands For Moving, Up: Bindable Readline Commands
27.4.2 Commands For Manipulating The History
--------------------------------------------
`accept-line (Newline or Return)'
Accept the line regardless of where the cursor is. If this line is
non-empty, it may be added to the history list for future recall
with `add_history()'. If this line is a modified history line,
the history line is restored to its original state.
`previous-history (C-p)'
Move `back' through the history list, fetching the previous
command.
`next-history (C-n)'
Move `forward' through the history list, fetching the next command.
`beginning-of-history (M-<)'
Move to the first line in the history.
`end-of-history (M->)'
Move to the end of the input history, i.e., the line currently
being entered.
`reverse-search-history (C-r)'
Search backward starting at the current line and moving `up'
through the history as necessary. This is an incremental search.
`forward-search-history (C-s)'
Search forward starting at the current line and moving `down'
through the the history as necessary. This is an incremental
search.
`non-incremental-reverse-search-history (M-p)'
Search backward starting at the current line and moving `up'
through the history as necessary using a non-incremental search
for a string supplied by the user.
`non-incremental-forward-search-history (M-n)'
Search forward starting at the current line and moving `down'
through the the history as necessary using a non-incremental search
for a string supplied by the user.
`history-search-forward ()'
Search forward through the history for the string of characters
between the start of the current line and the point. This is a
non-incremental search. By default, this command is unbound.
`history-search-backward ()'
Search backward through the history for the string of characters
between the start of the current line and the point. This is a
non-incremental search. By default, this command is unbound.
`yank-nth-arg (M-C-y)'
Insert the first argument to the previous command (usually the
second word on the previous line) at point. With an argument N,
insert the Nth word from the previous command (the words in the
previous command begin with word 0). A negative argument inserts
the Nth word from the end of the previous command.
`yank-last-arg (M-. or M-_)'
Insert last argument to the previous command (the last word of the
previous history entry). With an argument, behave exactly like
`yank-nth-arg'. Successive calls to `yank-last-arg' move back
through the history list, inserting the last argument of each line
in turn.
File: gdb.info, Node: Commands For Text, Next: Commands For Killing, Prev: Commands For History, Up: Bindable Readline Commands
27.4.3 Commands For Changing Text
---------------------------------
`delete-char (C-d)'
Delete the character at point. If point is at the beginning of
the line, there are no characters in the line, and the last
character typed was not bound to `delete-char', then return EOF.
`backward-delete-char (Rubout)'
Delete the character behind the cursor. A numeric argument means
to kill the characters instead of deleting them.
`forward-backward-delete-char ()'
Delete the character under the cursor, unless the cursor is at the
end of the line, in which case the character behind the cursor is
deleted. By default, this is not bound to a key.
`quoted-insert (C-q or C-v)'
Add the next character typed to the line verbatim. This is how to
insert key sequences like `C-q', for example.
`tab-insert (M-)'
Insert a tab character.
`self-insert (a, b, A, 1, !, ...)'
Insert yourself.
`transpose-chars (C-t)'
Drag the character before the cursor forward over the character at
the cursor, moving the cursor forward as well. If the insertion
point is at the end of the line, then this transposes the last two
characters of the line. Negative arguments have no effect.
`transpose-words (M-t)'
Drag the word before point past the word after point, moving point
past that word as well. If the insertion point is at the end of
the line, this transposes the last two words on the line.
`upcase-word (M-u)'
Uppercase the current (or following) word. With a negative
argument, uppercase the previous word, but do not move the cursor.
`downcase-word (M-l)'
Lowercase the current (or following) word. With a negative
argument, lowercase the previous word, but do not move the cursor.
`capitalize-word (M-c)'
Capitalize the current (or following) word. With a negative
argument, capitalize the previous word, but do not move the cursor.
`overwrite-mode ()'
Toggle overwrite mode. With an explicit positive numeric argument,
switches to overwrite mode. With an explicit non-positive numeric
argument, switches to insert mode. This command affects only
`emacs' mode; `vi' mode does overwrite differently. Each call to
`readline()' starts in insert mode.
In overwrite mode, characters bound to `self-insert' replace the
text at point rather than pushing the text to the right.
Characters bound to `backward-delete-char' replace the character
before point with a space.
By default, this command is unbound.
File: gdb.info, Node: Commands For Killing, Next: Numeric Arguments, Prev: Commands For Text, Up: Bindable Readline Commands
27.4.4 Killing And Yanking
--------------------------
`kill-line (C-k)'
Kill the text from point to the end of the line.
`backward-kill-line (C-x Rubout)'
Kill backward to the beginning of the line.
`unix-line-discard (C-u)'
Kill backward from the cursor to the beginning of the current line.
`kill-whole-line ()'
Kill all characters on the current line, no matter where point is.
By default, this is unbound.
`kill-word (M-d)'
Kill from point to the end of the current word, or if between
words, to the end of the next word. Word boundaries are the same
as `forward-word'.
`backward-kill-word (M-)'
Kill the word behind point. Word boundaries are the same as
`backward-word'.
`unix-word-rubout (C-w)'
Kill the word behind point, using white space as a word boundary.
The killed text is saved on the kill-ring.
`delete-horizontal-space ()'
Delete all spaces and tabs around point. By default, this is
unbound.
`kill-region ()'
Kill the text in the current region. By default, this command is
unbound.
`copy-region-as-kill ()'
Copy the text in the region to the kill buffer, so it can be yanked
right away. By default, this command is unbound.
`copy-backward-word ()'
Copy the word before point to the kill buffer. The word
boundaries are the same as `backward-word'. By default, this
command is unbound.
`copy-forward-word ()'
Copy the word following point to the kill buffer. The word
boundaries are the same as `forward-word'. By default, this
command is unbound.
`yank (C-y)'
Yank the top of the kill ring into the buffer at point.
`yank-pop (M-y)'
Rotate the kill-ring, and yank the new top. You can only do this
if the prior command is `yank' or `yank-pop'.
File: gdb.info, Node: Numeric Arguments, Next: Commands For Completion, Prev: Commands For Killing, Up: Bindable Readline Commands
27.4.5 Specifying Numeric Arguments
-----------------------------------
`digit-argument (M-0, M-1, ... M--)'
Add this digit to the argument already accumulating, or start a new
argument. `M--' starts a negative argument.
`universal-argument ()'
This is another way to specify an argument. If this command is
followed by one or more digits, optionally with a leading minus
sign, those digits define the argument. If the command is
followed by digits, executing `universal-argument' again ends the
numeric argument, but is otherwise ignored. As a special case, if
this command is immediately followed by a character that is
neither a digit or minus sign, the argument count for the next
command is multiplied by four. The argument count is initially
one, so executing this function the first time makes the argument
count four, a second time makes the argument count sixteen, and so
on. By default, this is not bound to a key.
File: gdb.info, Node: Commands For Completion, Next: Keyboard Macros, Prev: Numeric Arguments, Up: Bindable Readline Commands
27.4.6 Letting Readline Type For You
------------------------------------
`complete ()'
Attempt to perform completion on the text before point. The
actual completion performed is application-specific. The default
is filename completion.
`possible-completions (M-?)'
List the possible completions of the text before point.
`insert-completions (M-*)'
Insert all completions of the text before point that would have
been generated by `possible-completions'.
`menu-complete ()'
Similar to `complete', but replaces the word to be completed with
a single match from the list of possible completions. Repeated
execution of `menu-complete' steps through the list of possible
completions, inserting each match in turn. At the end of the list
of completions, the bell is rung (subject to the setting of
`bell-style') and the original text is restored. An argument of N
moves N positions forward in the list of matches; a negative
argument may be used to move backward through the list. This
command is intended to be bound to , but is unbound by
default.
`delete-char-or-list ()'
Deletes the character under the cursor if not at the beginning or
end of the line (like `delete-char'). If at the end of the line,
behaves identically to `possible-completions'. This command is
unbound by default.
File: gdb.info, Node: Keyboard Macros, Next: Miscellaneous Commands, Prev: Commands For Completion, Up: Bindable Readline Commands
27.4.7 Keyboard Macros
----------------------
`start-kbd-macro (C-x ()'
Begin saving the characters typed into the current keyboard macro.
`end-kbd-macro (C-x ))'
Stop saving the characters typed into the current keyboard macro
and save the definition.
`call-last-kbd-macro (C-x e)'
Re-execute the last keyboard macro defined, by making the
characters in the macro appear as if typed at the keyboard.
File: gdb.info, Node: Miscellaneous Commands, Prev: Keyboard Macros, Up: Bindable Readline Commands
27.4.8 Some Miscellaneous Commands
----------------------------------
`re-read-init-file (C-x C-r)'
Read in the contents of the INPUTRC file, and incorporate any
bindings or variable assignments found there.
`abort (C-g)'
Abort the current editing command and ring the terminal's bell
(subject to the setting of `bell-style').
`do-uppercase-version (M-a, M-b, M-X, ...)'
If the metafied character X is lowercase, run the command that is
bound to the corresponding uppercase character.
`prefix-meta ()'
Metafy the next character typed. This is for keyboards without a
meta key. Typing ` f' is equivalent to typing `M-f'.
`undo (C-_ or C-x C-u)'
Incremental undo, separately remembered for each line.
`revert-line (M-r)'
Undo all changes made to this line. This is like executing the
`undo' command enough times to get back to the beginning.
`tilde-expand (M-~)'
Perform tilde expansion on the current word.
`set-mark (C-@)'
Set the mark to the point. If a numeric argument is supplied, the
mark is set to that position.
`exchange-point-and-mark (C-x C-x)'
Swap the point with the mark. The current cursor position is set
to the saved position, and the old cursor position is saved as the
mark.
`character-search (C-])'
A character is read and point is moved to the next occurrence of
that character. A negative count searches for previous
occurrences.
`character-search-backward (M-C-])'
A character is read and point is moved to the previous occurrence
of that character. A negative count searches for subsequent
occurrences.
`insert-comment (M-#)'
Without a numeric argument, the value of the `comment-begin'
variable is inserted at the beginning of the current line. If a
numeric argument is supplied, this command acts as a toggle: if
the characters at the beginning of the line do not match the value
of `comment-begin', the value is inserted, otherwise the
characters in `comment-begin' are deleted from the beginning of
the line. In either case, the line is accepted as if a newline
had been typed.
`dump-functions ()'
Print all of the functions and their key bindings to the Readline
output stream. If a numeric argument is supplied, the output is
formatted in such a way that it can be made part of an INPUTRC
file. This command is unbound by default.
`dump-variables ()'
Print all of the settable variables and their values to the
Readline output stream. If a numeric argument is supplied, the
output is formatted in such a way that it can be made part of an
INPUTRC file. This command is unbound by default.
`dump-macros ()'
Print all of the Readline key sequences bound to macros and the
strings they output. If a numeric argument is supplied, the
output is formatted in such a way that it can be made part of an
INPUTRC file. This command is unbound by default.
`emacs-editing-mode (C-e)'
When in `vi' command mode, this causes a switch to `emacs' editing
mode.
`vi-editing-mode (M-C-j)'
When in `emacs' editing mode, this causes a switch to `vi' editing
mode.
File: gdb.info, Node: Readline vi Mode, Prev: Bindable Readline Commands, Up: Command Line Editing
27.5 Readline vi Mode
=====================
While the Readline library does not have a full set of `vi' editing
functions, it does contain enough to allow simple editing of the line.
The Readline `vi' mode behaves as specified in the POSIX 1003.2
standard.
In order to switch interactively between `emacs' and `vi' editing
modes, use the command `M-C-j' (bound to emacs-editing-mode when in
`vi' mode and to vi-editing-mode in `emacs' mode). The Readline
default is `emacs' mode.
When you enter a line in `vi' mode, you are already placed in
`insertion' mode, as if you had typed an `i'. Pressing switches
you into `command' mode, where you can edit the text of the line with
the standard `vi' movement keys, move to previous history lines with
`k' and subsequent lines with `j', and so forth.
File: gdb.info, Node: Using History Interactively, Next: Installing GDB, Prev: Command Line Editing, Up: Top
28 Using History Interactively
******************************
This chapter describes how to use the GNU History Library interactively,
from a user's standpoint. It should be considered a user's guide.
* Menu:
* History Interaction:: What it feels like using History as a user.
File: gdb.info, Node: History Interaction, Up: Using History Interactively
28.1 History Expansion
======================
The History library provides a history expansion feature that is similar
to the history expansion provided by `csh'. This section describes the
syntax used to manipulate the history information.
History expansions introduce words from the history list into the
input stream, making it easy to repeat commands, insert the arguments
to a previous command into the current input line, or fix errors in
previous commands quickly.
History expansion takes place in two parts. The first is to
determine which line from the history list should be used during
substitution. The second is to select portions of that line for
inclusion into the current one. The line selected from the history is
called the "event", and the portions of that line that are acted upon
are called "words". Various "modifiers" are available to manipulate
the selected words. The line is broken into words in the same fashion
that Bash does, so that several words surrounded by quotes are
considered one word. History expansions are introduced by the
appearance of the history expansion character, which is `!' by default.
* Menu:
* Event Designators:: How to specify which history line to use.
* Word Designators:: Specifying which words are of interest.
* Modifiers:: Modifying the results of substitution.
File: gdb.info, Node: Event Designators, Next: Word Designators, Up: History Interaction
28.1.1 Event Designators
------------------------
An event designator is a reference to a command line entry in the
history list.
`!'
Start a history substitution, except when followed by a space, tab,
the end of the line, `=' or `('.
`!N'
Refer to command line N.
`!-N'
Refer to the command N lines back.
`!!'
Refer to the previous command. This is a synonym for `!-1'.
`!STRING'
Refer to the most recent command starting with STRING.
`!?STRING[?]'
Refer to the most recent command containing STRING. The trailing
`?' may be omitted if the STRING is followed immediately by a
newline.
`^STRING1^STRING2^'
Quick Substitution. Repeat the last command, replacing STRING1
with STRING2. Equivalent to `!!:s/STRING1/STRING2/'.
`!#'
The entire command line typed so far.
File: gdb.info, Node: Word Designators, Next: Modifiers, Prev: Event Designators, Up: History Interaction
28.1.2 Word Designators
-----------------------
Word designators are used to select desired words from the event. A
`:' separates the event specification from the word designator. It may
be omitted if the word designator begins with a `^', `$', `*', `-', or
`%'. Words are numbered from the beginning of the line, with the first
word being denoted by 0 (zero). Words are inserted into the current
line separated by single spaces.
For example,
`!!'
designates the preceding command. When you type this, the
preceding command is repeated in toto.
`!!:$'
designates the last argument of the preceding command. This may be
shortened to `!$'.
`!fi:2'
designates the second argument of the most recent command starting
with the letters `fi'.
Here are the word designators:
`0 (zero)'
The `0'th word. For many applications, this is the command word.
`N'
The Nth word.
`^'
The first argument; that is, word 1.
`$'
The last argument.
`%'
The word matched by the most recent `?STRING?' search.
`X-Y'
A range of words; `-Y' abbreviates `0-Y'.
`*'
All of the words, except the `0'th. This is a synonym for `1-$'.
It is not an error to use `*' if there is just one word in the
event; the empty string is returned in that case.
`X*'
Abbreviates `X-$'
`X-'
Abbreviates `X-$' like `X*', but omits the last word.
If a word designator is supplied without an event specification, the
previous command is used as the event.
File: gdb.info, Node: Modifiers, Prev: Word Designators, Up: History Interaction
28.1.3 Modifiers
----------------
After the optional word designator, you can add a sequence of one or
more of the following modifiers, each preceded by a `:'.
`h'
Remove a trailing pathname component, leaving only the head.
`t'
Remove all leading pathname components, leaving the tail.
`r'
Remove a trailing suffix of the form `.SUFFIX', leaving the
basename.
`e'
Remove all but the trailing suffix.
`p'
Print the new command but do not execute it.
`s/OLD/NEW/'
Substitute NEW for the first occurrence of OLD in the event line.
Any delimiter may be used in place of `/'. The delimiter may be
quoted in OLD and NEW with a single backslash. If `&' appears in
NEW, it is replaced by OLD. A single backslash will quote the
`&'. The final delimiter is optional if it is the last character
on the input line.
`&'
Repeat the previous substitution.
`g'
Cause changes to be applied over the entire event line. Used in
conjunction with `s', as in `gs/OLD/NEW/', or with `&'.
File: gdb.info, Node: Installing GDB, Next: Maintenance Commands, Prev: Using History Interactively, Up: Top
Appendix B Installing GDB
*************************
GDB comes with a `configure' script that automates the process of
preparing GDB for installation; you can then use `make' to build the
`gdb' program.
The GDB distribution includes all the source code you need for GDB
in a single directory, whose name is usually composed by appending the
version number to `gdb'.
For example, the GDB version 6.3 distribution is in the `gdb-6.3'
directory. That directory contains:
`gdb-6.3/configure (and supporting files)'
script for configuring GDB and all its supporting libraries
`gdb-6.3/gdb'
the source specific to GDB itself
`gdb-6.3/bfd'
source for the Binary File Descriptor library
`gdb-6.3/include'
GNU include files
`gdb-6.3/libiberty'
source for the `-liberty' free software library
`gdb-6.3/opcodes'
source for the library of opcode tables and disassemblers
`gdb-6.3/readline'
source for the GNU command-line interface
`gdb-6.3/glob'
source for the GNU filename pattern-matching subroutine
`gdb-6.3/mmalloc'
source for the GNU memory-mapped malloc package
The simplest way to configure and build GDB is to run `configure'
from the `gdb-VERSION-NUMBER' source directory, which in this example
is the `gdb-6.3' directory.
First switch to the `gdb-VERSION-NUMBER' source directory if you are
not already in it; then run `configure'. Pass the identifier for the
platform on which GDB will run as an argument.
For example:
cd gdb-6.3
./configure HOST
make
where HOST is an identifier such as `sun4' or `decstation', that
identifies the platform where GDB will run. (You can often leave off
HOST; `configure' tries to guess the correct value by examining your
system.)
Running `configure HOST' and then running `make' builds the `bfd',
`readline', `mmalloc', and `libiberty' libraries, then `gdb' itself.
The configured source files, and the binaries, are left in the
corresponding source directories.
`configure' is a Bourne-shell (`/bin/sh') script; if your system
does not recognize this automatically when you run a different shell,
you may need to run `sh' on it explicitly:
sh configure HOST
If you run `configure' from a directory that contains source
directories for multiple libraries or programs, such as the `gdb-6.3'
source directory for version 6.3, `configure' creates configuration
files for every directory level underneath (unless you tell it not to,
with the `--norecursion' option).
You should run the `configure' script from the top directory in the
source tree, the `gdb-VERSION-NUMBER' directory. If you run
`configure' from one of the subdirectories, you will configure only
that subdirectory. That is usually not what you want. In particular,
if you run the first `configure' from the `gdb' subdirectory of the
`gdb-VERSION-NUMBER' directory, you will omit the configuration of
`bfd', `readline', and other sibling directories of the `gdb'
subdirectory. This leads to build errors about missing include files
such as `bfd/bfd.h'.
You can install `gdb' anywhere; it has no hardwired paths. However,
you should make sure that the shell on your path (named by the `SHELL'
environment variable) is publicly readable. Remember that GDB uses the
shell to start your program--some systems refuse to let GDB debug child
processes whose programs are not readable.
* Menu:
* Separate Objdir:: Compiling GDB in another directory
* Config Names:: Specifying names for hosts and targets
* Configure Options:: Summary of options for configure
File: gdb.info, Node: Separate Objdir, Next: Config Names, Up: Installing GDB
B.1 Compiling GDB in another directory
======================================
If you want to run GDB versions for several host or target machines,
you need a different `gdb' compiled for each combination of host and
target. `configure' is designed to make this easy by allowing you to
generate each configuration in a separate subdirectory, rather than in
the source directory. If your `make' program handles the `VPATH'
feature (GNU `make' does), running `make' in each of these directories
builds the `gdb' program specified there.
To build `gdb' in a separate directory, run `configure' with the
`--srcdir' option to specify where to find the source. (You also need
to specify a path to find `configure' itself from your working
directory. If the path to `configure' would be the same as the
argument to `--srcdir', you can leave out the `--srcdir' option; it is
assumed.)
For example, with version 6.3, you can build GDB in a separate
directory for a Sun 4 like this:
cd gdb-6.3
mkdir ../gdb-sun4
cd ../gdb-sun4
../gdb-6.3/configure sun4
make
When `configure' builds a configuration using a remote source
directory, it creates a tree for the binaries with the same structure
(and using the same names) as the tree under the source directory. In
the example, you'd find the Sun 4 library `libiberty.a' in the
directory `gdb-sun4/libiberty', and GDB itself in `gdb-sun4/gdb'.
Make sure that your path to the `configure' script has just one
instance of `gdb' in it. If your path to `configure' looks like
`../gdb-6.3/gdb/configure', you are configuring only one subdirectory
of GDB, not the whole package. This leads to build errors about
missing include files such as `bfd/bfd.h'.
One popular reason to build several GDB configurations in separate
directories is to configure GDB for cross-compiling (where GDB runs on
one machine--the "host"--while debugging programs that run on another
machine--the "target"). You specify a cross-debugging target by giving
the `--target=TARGET' option to `configure'.
When you run `make' to build a program or library, you must run it
in a configured directory--whatever directory you were in when you
called `configure' (or one of its subdirectories).
The `Makefile' that `configure' generates in each source directory
also runs recursively. If you type `make' in a source directory such
as `gdb-6.3' (or in a separate configured directory configured with
`--srcdir=DIRNAME/gdb-6.3'), you will build all the required libraries,
and then build GDB.
When you have multiple hosts or targets configured in separate
directories, you can run `make' on them in parallel (for example, if
they are NFS-mounted on each of the hosts); they will not interfere
with each other.
File: gdb.info, Node: Config Names, Next: Configure Options, Prev: Separate Objdir, Up: Installing GDB
B.2 Specifying names for hosts and targets
==========================================
The specifications used for hosts and targets in the `configure' script
are based on a three-part naming scheme, but some short predefined
aliases are also supported. The full naming scheme encodes three pieces
of information in the following pattern:
ARCHITECTURE-VENDOR-OS
For example, you can use the alias `sun4' as a HOST argument, or as
the value for TARGET in a `--target=TARGET' option. The equivalent
full name is `sparc-sun-sunos4'.
The `configure' script accompanying GDB does not provide any query
facility to list all supported host and target names or aliases.
`configure' calls the Bourne shell script `config.sub' to map
abbreviations to full names; you can read the script, if you wish, or
you can use it to test your guesses on abbreviations--for example:
% sh config.sub i386-linux
i386-pc-linux-gnu
% sh config.sub alpha-linux
alpha-unknown-linux-gnu
% sh config.sub hp9k700
hppa1.1-hp-hpux
% sh config.sub sun4
sparc-sun-sunos4.1.1
% sh config.sub sun3
m68k-sun-sunos4.1.1
% sh config.sub i986v
Invalid configuration `i986v': machine `i986v' not recognized
`config.sub' is also distributed in the GDB source directory
(`gdb-6.3', for version 6.3).
File: gdb.info, Node: Configure Options, Prev: Config Names, Up: Installing GDB
B.3 `configure' options
=======================
Here is a summary of the `configure' options and arguments that are
most often useful for building GDB. `configure' also has several other
options not listed here. *note (configure.info)What Configure Does::,
for a full explanation of `configure'.
configure [--help]
[--prefix=DIR]
[--exec-prefix=DIR]
[--srcdir=DIRNAME]
[--norecursion] [--rm]
[--target=TARGET]
HOST
You may introduce options with a single `-' rather than `--' if you
prefer; but you may abbreviate option names if you use `--'.
`--help'
Display a quick summary of how to invoke `configure'.
`--prefix=DIR'
Configure the source to install programs and files under directory
`DIR'.
`--exec-prefix=DIR'
Configure the source to install programs under directory `DIR'.
`--srcdir=DIRNAME'
*Warning: using this option requires GNU `make', or another `make'
that implements the `VPATH' feature.*
Use this option to make configurations in directories separate
from the GDB source directories. Among other things, you can use
this to build (or maintain) several configurations simultaneously,
in separate directories. `configure' writes configuration
specific files in the current directory, but arranges for them to
use the source in the directory DIRNAME. `configure' creates
directories under the working directory in parallel to the source
directories below DIRNAME.
`--norecursion'
Configure only the directory level where `configure' is executed;
do not propagate configuration to subdirectories.
`--target=TARGET'
Configure GDB for cross-debugging programs running on the specified
TARGET. Without this option, GDB is configured to debug programs
that run on the same machine (HOST) as GDB itself.
There is no convenient way to generate a list of all available
targets.
`HOST ...'
Configure GDB to run on the specified HOST.
There is no convenient way to generate a list of all available
hosts.
There are many other options available as well, but they are
generally needed for special purposes only.
File: gdb.info, Node: Maintenance Commands, Next: Remote Protocol, Prev: Installing GDB, Up: Top
Appendix C Maintenance Commands
*******************************
In addition to commands intended for GDB users, GDB includes a number
of commands intended for GDB developers. These commands are provided
here for reference.
`maint info breakpoints'
Using the same format as `info breakpoints', display both the
breakpoints you've set explicitly, and those GDB is using for
internal purposes. Internal breakpoints are shown with negative
breakpoint numbers. The type column identifies what kind of
breakpoint is shown:
`breakpoint'
Normal, explicitly set breakpoint.
`watchpoint'
Normal, explicitly set watchpoint.
`longjmp'
Internal breakpoint, used to handle correctly stepping through
`longjmp' calls.
`longjmp resume'
Internal breakpoint at the target of a `longjmp'.
`until'
Temporary internal breakpoint used by the GDB `until' command.
`finish'
Temporary internal breakpoint used by the GDB `finish'
command.
`shlib events'
Shared library events.
`maint internal-error'
`maint internal-warning'
Cause GDB to call the internal function `internal_error' or
`internal_warning' and hence behave as though an internal error or
internal warning has been detected. In addition to reporting the
internal problem, these functions give the user the opportunity to
either quit GDB or create a core file of the current GDB session.
(gdb) maint internal-error testing, 1, 2
.../maint.c:121: internal-error: testing, 1, 2
A problem internal to GDB has been detected. Further
debugging may prove unreliable.
Quit this debugging session? (y or n) n
Create a core file? (y or n) n
(gdb)
Takes an optional parameter that is used as the text of the error
or warning message.
`maint print dummy-frames'
Prints the contents of GDB's internal dummy-frame stack.
(gdb) b add
...
(gdb) print add(2,3)
Breakpoint 2, add (a=2, b=3) at ...
58 return (a + b);
The program being debugged stopped while in a function called from GDB.
...
(gdb) maint print dummy-frames
0x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
top=0x0200bdd4 id={stack=0x200bddc,code=0x101405c}
call_lo=0x01014000 call_hi=0x01014001
(gdb)
Takes an optional file parameter.
`maint print registers'
`maint print raw-registers'
`maint print cooked-registers'
`maint print register-groups'
Print GDB's internal register data structures.
The command `maint print raw-registers' includes the contents of
the raw register cache; the command `maint print cooked-registers'
includes the (cooked) value of all registers; and the command
`maint print register-groups' includes the groups that each
register is a member of. *Note Registers: (gdbint)Registers.
Takes an optional file parameter.
`maint print reggroups'
Print GDB's internal register group data structures.
Takes an optional file parameter.
(gdb) maint print reggroups
Group Type
general user
float user
all user
vector user
system user
save internal
restore internal
`maint set profile'
`maint show profile'
Control profiling of GDB.
Profiling will be disabled until you use the `maint set profile'
command to enable it. When you enable profiling, the system will
begin collecting timing and execution count data; when you disable
profiling or exit GDB, the results will be written to a log file.
Remember that if you use profiling, GDB will overwrite the
profiling log file (often called `gmon.out'). If you have a
record of important profiling data in a `gmon.out' file, be sure
to move it to a safe location.
Configuring with `--enable-profiling' arranges for GDB to be
compiled with the `-pg' compiler option.
`maint set dwarf2 max-cache-age'
`maint show dwarf2 max-cache-age'
Control the DWARF 2 compilation unit cache.
In object files with inter-compilation-unit references, such as
those produced by the GCC option `-feliminate-dwarf2-dups', the
DWARF 2 reader needs to frequently refer to previously read
compilation units. This setting controls how long a compilation
unit will remain in the cache if it is not referenced. Setting it
to zero disables caching, which will slow down GDB startup but
reduce memory consumption.
File: gdb.info, Node: Remote Protocol, Next: Agent Expressions, Prev: Maintenance Commands, Up: Top
Appendix D GDB Remote Serial Protocol
*************************************
* Menu:
* Overview::
* Packets::
* Stop Reply Packets::
* General Query Packets::
* Register Packet Format::
* Examples::
* File-I/O remote protocol extension::
File: gdb.info, Node: Overview, Next: Packets, Up: Remote Protocol
D.1 Overview
============
There may be occasions when you need to know something about the
protocol--for example, if there is only one serial port to your target
machine, you might want your program to do something special if it
recognizes a packet meant for GDB.
In the examples below, `->' and `<-' are used to indicate
transmitted and received data respectfully.
All GDB commands and responses (other than acknowledgments) are sent
as a PACKET. A PACKET is introduced with the character `$', the actual
PACKET-DATA, and the terminating character `#' followed by a two-digit
CHECKSUM:
`$'PACKET-DATA`#'CHECKSUM
The two-digit CHECKSUM is computed as the modulo 256 sum of all
characters between the leading `$' and the trailing `#' (an eight bit
unsigned checksum).
Implementors should note that prior to GDB 5.0 the protocol
specification also included an optional two-digit SEQUENCE-ID:
`$'SEQUENCE-ID`:'PACKET-DATA`#'CHECKSUM
That SEQUENCE-ID was appended to the acknowledgment. GDB has never
output SEQUENCE-IDs. Stubs that handle packets added since GDB 5.0
must not accept SEQUENCE-ID.
When either the host or the target machine receives a packet, the
first response expected is an acknowledgment: either `+' (to indicate
the package was received correctly) or `-' (to request retransmission):
-> `$'PACKET-DATA`#'CHECKSUM
<- `+'
The host (GDB) sends COMMANDs, and the target (the debugging stub
incorporated in your program) sends a RESPONSE. In the case of step
and continue COMMANDs, the response is only sent when the operation has
completed (the target has again stopped).
PACKET-DATA consists of a sequence of characters with the exception
of `#' and `$' (see `X' packet for additional exceptions).
Fields within the packet should be separated using `,' `;' or `:'.
Except where otherwise noted all numbers are represented in HEX with
leading zeros suppressed.
Implementors should note that prior to GDB 5.0, the character `:'
could not appear as the third character in a packet (as it would
potentially conflict with the SEQUENCE-ID).
Response DATA can be run-length encoded to save space. A `*' means
that the next character is an ASCII encoding giving a repeat count
which stands for that many repetitions of the character preceding the
`*'. The encoding is `n+29', yielding a printable character where `n
>=3' (which is where rle starts to win). The printable characters `$',
`#', `+' and `-' or with a numeric value greater than 126 should not be
used.
So:
"`0* '"
means the same as "0000".
The error response returned for some packets includes a two character
error number. That number is not well defined.
For any COMMAND not supported by the stub, an empty response
(`$#00') should be returned. That way it is possible to extend the
protocol. A newer GDB can tell if a packet is supported based on that
response.
A stub is required to support the `g', `G', `m', `M', `c', and `s'
COMMANDs. All other COMMANDs are optional.
File: gdb.info, Node: Packets, Next: Stop Reply Packets, Prev: Overview, Up: Remote Protocol
D.2 Packets
===========
The following table provides a complete list of all currently defined
COMMANDs and their corresponding response DATA.
`!' -- extended mode
Enable extended mode. In extended mode, the remote server is made
persistent. The `R' packet is used to restart the program being
debugged.
Reply:
`OK'
The remote target both supports and has enabled extended mode.
`?' -- last signal
Indicate the reason the target halted. The reply is the same as
for step and continue.
Reply: *Note Stop Reply Packets::, for the reply specifications.
`a' -- reserved
Reserved for future use.
`A'ARGLEN`,'ARGNUM`,'ARG`,...' -- set program arguments *(reserved)*
Initialized `argv[]' array passed into program. ARGLEN specifies
the number of bytes in the hex encoded byte stream ARG. See
`gdbserver' for more details.
Reply:
`OK'
`ENN'
`b'BAUD -- set baud *(deprecated)*
Change the serial line speed to BAUD.
JTC: _When does the transport layer state change? When it's
received, or after the ACK is transmitted. In either case, there
are problems if the command or the acknowledgment packet is
dropped._
Stan: _If people really wanted to add something like this, and get
it working for the first time, they ought to modify ser-unix.c to
send some kind of out-of-band message to a specially-setup stub
and have the switch happen "in between" packets, so that from
remote protocol's point of view, nothing actually happened._
`B'ADDR,MODE -- set breakpoint *(deprecated)*
Set (MODE is `S') or clear (MODE is `C') a breakpoint at ADDR.
This packet has been replaced by the `Z' and `z' packets (*note
insert breakpoint or watchpoint packet::).
`c'ADDR -- continue
ADDR is address to resume. If ADDR is omitted, resume at current
address.
Reply: *Note Stop Reply Packets::, for the reply specifications.
`C'SIG`;'ADDR -- continue with signal
Continue with signal SIG (hex signal number). If `;'ADDR is
omitted, resume at same address.
Reply: *Note Stop Reply Packets::, for the reply specifications.
`d' -- toggle debug *(deprecated)*
Toggle debug flag.
`D' -- detach
Detach GDB from the remote system. Sent to the remote target
before GDB disconnects via the `detach' command.
Reply:
`_no response_'
GDB does not check for any response after sending this packet.
`e' -- reserved
Reserved for future use.
`E' -- reserved
Reserved for future use.
`f' -- reserved
Reserved for future use.
`F'RC`,'EE`,'CF`;'XX -- Reply to target's F packet.
This packet is send by GDB as reply to a `F' request packet sent
by the target. This is part of the File-I/O protocol extension.
*Note File-I/O remote protocol extension::, for the specification.
`g' -- read registers
Read general registers.
Reply:
`XX...'
Each byte of register data is described by two hex digits.
The bytes with the register are transmitted in target byte
order. The size of each register and their position within
the `g' PACKET are determined by the GDB internal macros
DEPRECATED_REGISTER_RAW_SIZE and REGISTER_NAME macros. The
specification of several standard `g' packets is specified
below.
`ENN'
for an error.
`G'XX... -- write regs
*Note read registers packet::, for a description of the XX...
data.
Reply:
`OK'
for success
`ENN'
for an error
`h' -- reserved
Reserved for future use.
`H'CT... -- set thread
Set thread for subsequent operations (`m', `M', `g', `G', et.al.).
C depends on the operation to be performed: it should be `c' for
step and continue operations, `g' for other operations. The
thread designator T... may be -1, meaning all the threads, a
thread number, or zero which means pick any thread.
Reply:
`OK'
for success
`ENN'
for an error
`i'ADDR`,'NNN -- cycle step *(draft)*
Step the remote target by a single clock cycle. If `,'NNN is
present, cycle step NNN cycles. If ADDR is present, cycle step
starting at that address.
`I' -- signal then cycle step *(reserved)*
*Note step with signal packet::. *Note cycle step packet::.
`j' -- reserved
Reserved for future use.
`J' -- reserved
Reserved for future use.
`k' -- kill request
FIXME: _There is no description of how to operate when a specific
thread context has been selected (i.e. does 'k' kill only that
thread?)_.
`K' -- reserved
Reserved for future use.
`l' -- reserved
Reserved for future use.
`L' -- reserved
Reserved for future use.
`m'ADDR`,'LENGTH -- read memory
Read LENGTH bytes of memory starting at address ADDR. Neither GDB
nor the stub assume that sized memory transfers are assumed using
word aligned accesses. FIXME: _A word aligned memory transfer
mechanism is needed._
Reply:
`XX...'
XX... is mem contents. Can be fewer bytes than requested if
able to read only part of the data. Neither GDB nor the stub
assume that sized memory transfers are assumed using word
aligned accesses. FIXME: _A word aligned memory transfer
mechanism is needed._
`ENN'
NN is errno
`M'ADDR,LENGTH`:'XX... -- write mem
Write LENGTH bytes of memory starting at address ADDR. XX... is
the data.
Reply:
`OK'
for success
`ENN'
for an error (this includes the case where only part of the
data was written).
`n' -- reserved
Reserved for future use.
`N' -- reserved
Reserved for future use.
`o' -- reserved
Reserved for future use.
`O' -- reserved
`p'HEX NUMBER OF REGISTER -- read register packet
*Note read registers packet::, for a description of how the
returned register value is encoded.
Reply:
`XX...'
the register's value
`ENN'
for an error
`'
Indicating an unrecognized QUERY.
`P'N...`='R... -- write register
Write register N... with value R..., which contains two hex digits
for each byte in the register (target byte order).
Reply:
`OK'
for success
`ENN'
for an error
`q'QUERY -- general query
Request info about QUERY. In general GDB queries have a leading
upper case letter. Custom vendor queries should use a company
prefix (in lower case) ex: `qfsf.var'. QUERY may optionally be
followed by a `,' or `;' separated list. Stubs must ensure that
they match the full QUERY name.
Reply:
`XX...'
Hex encoded data from query. The reply can not be empty.
`ENN'
error reply
`'
Indicating an unrecognized QUERY.
`Q'VAR`='VAL -- general set
Set value of VAR to VAL.
*Note general query packet::, for a discussion of naming
conventions.
`r' -- reset *(deprecated)*
Reset the entire system.
`R'XX -- remote restart
Restart the program being debugged. XX, while needed, is ignored.
This packet is only available in extended mode.
Reply:
`_no reply_'
The `R' packet has no reply.
`s'ADDR -- step
ADDR is address to resume. If ADDR is omitted, resume at same
address.
Reply: *Note Stop Reply Packets::, for the reply specifications.
`S'SIG`;'ADDR -- step with signal
Like `C' but step not continue.
Reply: *Note Stop Reply Packets::, for the reply specifications.
`t'ADDR`:'PP`,'MM -- search
Search backwards starting at address ADDR for a match with pattern
PP and mask MM. PP and MM are 4 bytes. ADDR must be at least 3
digits.
`T'XX -- thread alive
Find out if the thread XX is alive.
Reply:
`OK'
thread is still alive
`ENN'
thread is dead
`u' -- reserved
Reserved for future use.
`U' -- reserved
Reserved for future use.
`v' -- verbose packet prefix
Packets starting with `v' are identified by a multi-letter name,
up to the first `;' or `?' (or the end of the packet).
`vCont'[;ACTION[`:'TID]]... -- extended resume
Resume the inferior. Different actions may be specified for each
thread. If an action is specified with no TID, then it is applied
to any threads that don't have a specific action specified; if no
default action is specified then other threads should remain
stopped. Specifying multiple default actions is an error;
specifying no actions is also an error. Thread IDs are specified
in hexadecimal. Currently supported actions are:
`c'
Continue.
`CSIG'
Continue with signal SIG. SIG should be two hex digits.
`s'
Step.
`SSIG'
Step with signal SIG. SIG should be two hex digits.
The optional ADDR argument normally associated with these packets
is not supported in `vCont'.
Reply: *Note Stop Reply Packets::, for the reply specifications.
`vCont?' -- extended resume query
Query support for the `vCont' packet.
Reply:
``vCont'[;ACTION]...'
The `vCont' packet is supported. Each ACTION is a supported
command in the `vCont' packet.
`'
The `vCont' packet is not supported.
`V' -- reserved
Reserved for future use.
`w' -- reserved
Reserved for future use.
`W' -- reserved
Reserved for future use.
`x' -- reserved
Reserved for future use.
`X'ADDR`,'LENGTH:XX... -- write mem (binary)
ADDR is address, LENGTH is number of bytes, XX... is binary data.
The characters `$', `#', and `0x7d' are escaped using `0x7d'.
Reply:
`OK'
for success
`ENN'
for an error
`y' -- reserved
Reserved for future use.
`Y' reserved
Reserved for future use.
`z'TYPE`,'ADDR`,'LENGTH -- remove breakpoint or watchpoint *(draft)*
`Z'TYPE`,'ADDR`,'LENGTH -- insert breakpoint or watchpoint *(draft)*
Insert (`Z') or remove (`z') a TYPE breakpoint or watchpoint
starting at address ADDRESS and covering the next LENGTH bytes.
Each breakpoint and watchpoint packet TYPE is documented
separately.
_Implementation notes: A remote target shall return an empty string
for an unrecognized breakpoint or watchpoint packet TYPE. A
remote target shall support either both or neither of a given
`Z'TYPE... and `z'TYPE... packet pair. To avoid potential
problems with duplicate packets, the operations should be
implemented in an idempotent way._
`z'`0'`,'ADDR`,'LENGTH -- remove memory breakpoint *(draft)*
`Z'`0'`,'ADDR`,'LENGTH -- insert memory breakpoint *(draft)*
Insert (`Z0') or remove (`z0') a memory breakpoint at address
`addr' of size `length'.
A memory breakpoint is implemented by replacing the instruction at
ADDR with a software breakpoint or trap instruction. The `length'
is used by targets that indicates the size of the breakpoint (in
bytes) that should be inserted (e.g., the ARM and MIPS can insert
either a 2 or 4 byte breakpoint).
_Implementation note: It is possible for a target to copy or move
code that contains memory breakpoints (e.g., when implementing
overlays). The behavior of this packet, in the presence of such a
target, is not defined._
Reply:
`OK'
success
`'
not supported
`ENN'
for an error
`z'`1'`,'ADDR`,'LENGTH -- remove hardware breakpoint *(draft)*
`Z'`1'`,'ADDR`,'LENGTH -- insert hardware breakpoint *(draft)*
Insert (`Z1') or remove (`z1') a hardware breakpoint at address
`addr' of size `length'.
A hardware breakpoint is implemented using a mechanism that is not
dependant on being able to modify the target's memory.
_Implementation note: A hardware breakpoint is not affected by code
movement._
Reply:
`OK'
success
`'
not supported
`ENN'
for an error
`z'`2'`,'ADDR`,'LENGTH -- remove write watchpoint *(draft)*
`Z'`2'`,'ADDR`,'LENGTH -- insert write watchpoint *(draft)*
Insert (`Z2') or remove (`z2') a write watchpoint.
Reply:
`OK'
success
`'
not supported
`ENN'
for an error
`z'`3'`,'ADDR`,'LENGTH -- remove read watchpoint *(draft)*
`Z'`3'`,'ADDR`,'LENGTH -- insert read watchpoint *(draft)*
Insert (`Z3') or remove (`z3') a read watchpoint.
Reply:
`OK'
success
`'
not supported
`ENN'
for an error
`z'`4'`,'ADDR`,'LENGTH -- remove access watchpoint *(draft)*
`Z'`4'`,'ADDR`,'LENGTH -- insert access watchpoint *(draft)*
Insert (`Z4') or remove (`z4') an access watchpoint.
Reply:
`OK'
success
`'
not supported
`ENN'
for an error
File: gdb.info, Node: Stop Reply Packets, Next: General Query Packets, Prev: Packets, Up: Remote Protocol
D.3 Stop Reply Packets
======================
The `C', `c', `S', `s' and `?' packets can receive any of the below as
a reply. In the case of the `C', `c', `S' and `s' packets, that reply
is only returned when the target halts. In the below the exact meaning
of `signal number' is poorly defined. In general one of the UNIX
signal numbering conventions is used.
`SAA'
AA is the signal number
``T'AAN...`:'R...`;'N...`:'R...`;'N...`:'R...`;''
AA = two hex digit signal number; N... = register number (hex),
R... = target byte ordered register contents, size defined by
`DEPRECATED_REGISTER_RAW_SIZE'; N... = `thread', R... = thread
process ID, this is a hex integer; N... = (`watch' | `rwatch' |
`awatch', R... = data address, this is a hex integer; N... = other
string not starting with valid hex digit. GDB should ignore this
N..., R... pair and go on to the next. This way we can extend the
protocol.
`WAA'
The process exited, and AA is the exit status. This is only
applicable to certain targets.
`XAA'
The process terminated with signal AA.
`OXX...'
XX... is hex encoding of ASCII data. This can happen at any time
while the program is running and the debugger should continue to
wait for `W', `T', etc.
`FCALL-ID`,'PARAMETER...'
CALL-ID is the identifier which says which host system call should
be called. This is just the name of the function. Translation
into the correct system call is only applicable as it's defined in
GDB. *Note File-I/O remote protocol extension::, for a list of
implemented system calls.
PARAMETER... is a list of parameters as defined for this very
system call.
The target replies with this packet when it expects GDB to call a
host system call on behalf of the target. GDB replies with an
appropriate `F' packet and keeps up waiting for the next reply
packet from the target. The latest `C', `c', `S' or `s' action is
expected to be continued. *Note File-I/O remote protocol
extension::, for more details.
File: gdb.info, Node: General Query Packets, Next: Register Packet Format, Prev: Stop Reply Packets, Up: Remote Protocol
D.4 General Query Packets
=========================
The following set and query packets have already been defined.
`q'`C' -- current thread
Return the current thread id.
Reply:
``QC'PID'
Where PID is a HEX encoded 16 bit process id.
`*'
Any other reply implies the old pid.
`q'`fThreadInfo' - all thread ids
`q'`sThreadInfo'
Obtain a list of active thread ids from the target (OS). Since
there may be too many active threads to fit into one reply packet,
this query works iteratively: it may require more than one
query/reply sequence to obtain the entire list of threads. The
first query of the sequence will be the `qf'`ThreadInfo' query;
subsequent queries in the sequence will be the `qs'`ThreadInfo'
query.
NOTE: replaces the `qL' query (see below).
Reply:
``m'ID'
A single thread id
``m'ID,ID...'
a comma-separated list of thread ids
``l''
(lower case 'el') denotes end of list.
In response to each query, the target will reply with a list of
one or more thread ids, in big-endian hex, separated by commas.
GDB will respond to each reply with a request for more thread ids
(using the `qs' form of the query), until the target responds with
`l' (lower-case el, for `'last'').
`q'`ThreadExtraInfo'`,'ID -- extra thread info
Where ID is a thread-id in big-endian hex. Obtain a printable
string description of a thread's attributes from the target OS.
This string may contain anything that the target OS thinks is
interesting for GDB to tell the user about the thread. The string
is displayed in GDB's `info threads' display. Some examples of
possible thread extra info strings are "Runnable", or "Blocked on
Mutex".
Reply:
`XX...'
Where XX... is a hex encoding of ASCII data, comprising the
printable string containing the extra information about the
thread's attributes.
`q'`L'STARTFLAGTHREADCOUNTNEXTTHREAD -- query LIST or THREADLIST *(deprecated)*
Obtain thread information from RTOS. Where: STARTFLAG (one hex
digit) is one to indicate the first query and zero to indicate a
subsequent query; THREADCOUNT (two hex digits) is the maximum
number of threads the response packet can contain; and NEXTTHREAD
(eight hex digits), for subsequent queries (STARTFLAG is zero), is
returned in the response as ARGTHREAD.
NOTE: this query is replaced by the `q'`fThreadInfo' query (see
above).
Reply:
``q'`M'COUNTDONEARGTHREADTHREAD...'
Where: COUNT (two hex digits) is the number of threads being
returned; DONE (one hex digit) is zero to indicate more
threads and one indicates no further threads; ARGTHREADID
(eight hex digits) is NEXTTHREAD from the request packet;
THREAD... is a sequence of thread IDs from the target.
THREADID (eight hex digits). See
`remote.c:parse_threadlist_response()'.
`q'`CRC:'ADDR`,'LENGTH -- compute CRC of memory block
Reply:
``E'NN'
An error (such as memory fault)
``C'CRC32'
A 32 bit cyclic redundancy check of the specified memory
region.
`q'`Offsets' -- query sect offs
Get section offsets that the target used when re-locating the
downloaded image. _Note: while a `Bss' offset is included in the
response, GDB ignores this and instead applies the `Data' offset
to the `Bss' section._
Reply:
``Text='XXX`;Data='YYY`;Bss='ZZZ'
`q'`P'MODETHREADID -- thread info request
Returns information on THREADID. Where: MODE is a hex encoded 32
bit mode; THREADID is a hex encoded 64 bit thread ID.
Reply:
`*'
See `remote.c:remote_unpack_thread_info_response()'.
`q'`Rcmd,'COMMAND -- remote command
COMMAND (hex encoded) is passed to the local interpreter for
execution. Invalid commands should be reported using the output
string. Before the final result packet, the target may also
respond with a number of intermediate `O'OUTPUT console output
packets. _Implementors should note that providing access to a
stubs's interpreter may have security implications_.
Reply:
`OK'
A command response with no output.
`OUTPUT'
A command response with the hex encoded output string OUTPUT.
``E'NN'
Indicate a badly formed request.
``''
When `q'`Rcmd' is not recognized.
`qSymbol::' -- symbol lookup
Notify the target that GDB is prepared to serve symbol lookup
requests. Accept requests from the target for the values of
symbols.
Reply:
``OK''
The target does not need to look up any (more) symbols.
``qSymbol:'SYM_NAME'
The target requests the value of symbol SYM_NAME (hex
encoded). GDB may provide the value by using the
`qSymbol:'SYM_VALUE:SYM_NAME message, described below.
`qSymbol:'SYM_VALUE:SYM_NAME -- symbol value
Set the value of SYM_NAME to SYM_VALUE.
SYM_NAME (hex encoded) is the name of a symbol whose value the
target has previously requested.
SYM_VALUE (hex) is the value for symbol SYM_NAME. If GDB cannot
supply a value for SYM_NAME, then this field will be empty.
Reply:
``OK''
The target does not need to look up any (more) symbols.
``qSymbol:'SYM_NAME'
The target requests the value of a new symbol SYM_NAME (hex
encoded). GDB will continue to supply the values of symbols
(if available), until the target ceases to request them.
`qPart':OBJECT:`read':ANNEX:OFFSET,LENGTH -- read special data
Read uninterpreted bytes from the target's special data area
identified by the keyword `object'. Request LENGTH bytes starting
at OFFSET bytes into the data. The content and encoding of ANNEX
is specific to the object; it can supply additional details about
what data to access.
Here are the specific requests of this form defined so far. All
``qPart':OBJECT:`read':...' requests use the same reply formats,
listed below.
`qPart':`auxv':`read'::OFFSET,LENGTH
Access the target's "auxiliary vector". *Note Auxiliary
Vector::. Note ANNEX must be empty.
Reply:
`OK'
The OFFSET in the request is at the end of the data. There
is no more data to be read.
XX...
Hex encoded data bytes read. This may be fewer bytes than
the LENGTH in the request.
`E00'
The request was malformed, or ANNEX was invalid.
`E'NN
The offset was invalid, or there was an error encountered
reading the data. NN is a hex-encoded `errno' value.
`""' (empty)
An empty reply indicates the OBJECT or ANNEX string was not
recognized by the stub.
`qPart':OBJECT:`write':ANNEX:OFFSET:DATA...
Write uninterpreted bytes into the target's special data area
identified by the keyword `object', starting at OFFSET bytes into
the data. DATA... is the hex-encoded data to be written. The
content and encoding of ANNEX is specific to the object; it can
supply additional details about what data to access.
No requests of this form are presently in use. This specification
serves as a placeholder to document the common format that new
specific request specifications ought to use.
Reply:
NN
NN (hex encoded) is the number of bytes written. This may be
fewer bytes than supplied in the request.
`E00'
The request was malformed, or ANNEX was invalid.
`E'NN
The offset was invalid, or there was an error encountered
writing the data. NN is a hex-encoded `errno' value.
`""' (empty)
An empty reply indicates the OBJECT or ANNEX string was not
recognized by the stub, or that the object does not support
writing.
`qPart':OBJECT:OPERATION:...
Requests of this form may be added in the future. When a stub does
not recognize the OBJECT keyword, or its support for OBJECT does
not recognize the OPERATION keyword, the stub must respond with an
empty packet.
File: gdb.info, Node: Register Packet Format, Next: Examples, Prev: General Query Packets, Up: Remote Protocol
D.5 Register Packet Format
==========================
The following `g'/`G' packets have previously been defined. In the
below, some thirty-two bit registers are transferred as sixty-four
bits. Those registers should be zero/sign extended (which?) to fill
the space allocated. Register bytes are transfered in target byte
order. The two nibbles within a register byte are transfered
most-significant - least-significant.
MIPS32
All registers are transfered as thirty-two bit quantities in the
order: 32 general-purpose; sr; lo; hi; bad; cause; pc; 32
floating-point registers; fsr; fir; fp.
MIPS64
All registers are transfered as sixty-four bit quantities
(including thirty-two bit registers such as `sr'). The ordering
is the same as `MIPS32'.
File: gdb.info, Node: Examples, Next: File-I/O remote protocol extension, Prev: Register Packet Format, Up: Remote Protocol
D.6 Examples
============
Example sequence of a target being re-started. Notice how the restart
does not get any direct output:
-> `R00'
<- `+'
_target restarts_
-> `?'
<- `+'
<- `T001:1234123412341234'
-> `+'
Example sequence of a target being stepped by a single instruction:
-> `G1445...'
<- `+'
-> `s'
<- `+'
_time passes_
<- `T001:1234123412341234'
-> `+'
-> `g'
<- `+'
<- `1455...'
-> `+'
File: gdb.info, Node: File-I/O remote protocol extension, Prev: Examples, Up: Remote Protocol
D.7 File-I/O remote protocol extension
======================================
* Menu:
* File-I/O Overview::
* Protocol basics::
* The F request packet::
* The F reply packet::
* Memory transfer::
* The Ctrl-C message::
* Console I/O::
* The isatty call::
* The system call::
* List of supported calls::
* Protocol specific representation of datatypes::
* Constants::
* File-I/O Examples::
File: gdb.info, Node: File-I/O Overview, Next: Protocol basics, Up: File-I/O remote protocol extension
D.7.1 File-I/O Overview
-----------------------
The File I/O remote protocol extension (short: File-I/O) allows the
target to use the hosts file system and console I/O when calling various
system calls. System calls on the target system are translated into a
remote protocol packet to the host system which then performs the needed
actions and returns with an adequate response packet to the target
system. This simulates file system operations even on targets that
lack file systems.
The protocol is defined host- and target-system independent. It uses
it's own independent representation of datatypes and values. Both, GDB
and the target's GDB stub are responsible for translating the system
dependent values into the unified protocol values when data is
transmitted.
The communication is synchronous. A system call is possible only
when GDB is waiting for the `C', `c', `S' or `s' packets. While GDB
handles the request for a system call, the target is stopped to allow
deterministic access to the target's memory. Therefore File-I/O is not
interuptible by target signals. It is possible to interrupt File-I/O
by a user interrupt (Ctrl-C), though.
The target's request to perform a host system call does not finish
the latest `C', `c', `S' or `s' action. That means, after finishing
the system call, the target returns to continuing the previous activity
(continue, step). No additional continue or step request from GDB is
required.
(gdb) continue
<- target requests 'system call X'
target is stopped, GDB executes system call
-> GDB returns result
... target continues, GDB returns to wait for the target
<- target hits breakpoint and sends a Txx packet
The protocol is only used for files on the host file system and for
I/O on the console. Character or block special devices, pipes, named
pipes or sockets or any other communication method on the host system
are not supported by this protocol.
File: gdb.info, Node: Protocol basics, Next: The F request packet, Prev: File-I/O Overview, Up: File-I/O remote protocol extension
D.7.2 Protocol basics
---------------------
The File-I/O protocol uses the `F' packet, as request as well as as
reply packet. Since a File-I/O system call can only occur when GDB is
waiting for the continuing or stepping target, the File-I/O request is
a reply that GDB has to expect as a result of a former `C', `c', `S' or
`s' packet. This `F' packet contains all information needed to allow
GDB to call the appropriate host system call:
* A unique identifier for the requested system call.
* All parameters to the system call. Pointers are given as addresses
in the target memory address space. Pointers to strings are given
as pointer/length pair. Numerical values are given as they are.
Numerical control values are given in a protocol specific
representation.
At that point GDB has to perform the following actions.
* If parameter pointer values are given, which point to data needed
as input to a system call, GDB requests this data from the target
with a standard `m' packet request. This additional communication
has to be expected by the target implementation and is handled as
any other `m' packet.
* GDB translates all value from protocol representation to host
representation as needed. Datatypes are coerced into the host
types.
* GDB calls the system call
* It then coerces datatypes back to protocol representation.
* If pointer parameters in the request packet point to buffer space
in which a system call is expected to copy data to, the data is
transmitted to the target using a `M' or `X' packet. This packet
has to be expected by the target implementation and is handled as
any other `M' or `X' packet.
Eventually GDB replies with another `F' packet which contains all
necessary information for the target to continue. This at least
contains
* Return value.
* `errno', if has been changed by the system call.
* "Ctrl-C" flag.
After having done the needed type and value coercion, the target
continues the latest continue or step action.
File: gdb.info, Node: The F request packet, Next: The F reply packet, Prev: Protocol basics, Up: File-I/O remote protocol extension
D.7.3 The `F' request packet
----------------------------
The `F' request packet has the following format:
`F'CALL-ID`,'PARAMETER...
CALL-ID is the identifier to indicate the host system call to be
called. This is just the name of the function.
PARAMETER... are the parameters to the system call.
Parameters are hexadecimal integer values, either the real values in
case of scalar datatypes, as pointers to target buffer space in case of
compound datatypes and unspecified memory areas or as pointer/length
pairs in case of string parameters. These are appended to the call-id,
each separated from its predecessor by a comma. All values are
transmitted in ASCII string representation, pointer/length pairs
separated by a slash.
File: gdb.info, Node: The F reply packet, Next: Memory transfer, Prev: The F request packet, Up: File-I/O remote protocol extension
D.7.4 The `F' reply packet
--------------------------
The `F' reply packet has the following format:
`F'RETCODE`,'ERRNO`,'CTRL-C FLAG`;'CALL SPECIFIC ATTACHMENT
RETCODE is the return code of the system call as hexadecimal value.
ERRNO is the errno set by the call, in protocol specific
representation. This parameter can be omitted if the call was
successful.
CTRL-C FLAG is only send if the user requested a break. In this
case, ERRNO must be send as well, even if the call was successful.
The CTRL-C FLAG itself consists of the character 'C':
F0,0,C
or, if the call was interupted before the host call has been
performed:
F-1,4,C
assuming 4 is the protocol specific representation of `EINTR'.
File: gdb.info, Node: Memory transfer, Next: The Ctrl-C message, Prev: The F reply packet, Up: File-I/O remote protocol extension
D.7.5 Memory transfer
---------------------
Structured data which is transferred using a memory read or write as
e.g. a `struct stat' is expected to be in a protocol specific format
with all scalar multibyte datatypes being big endian. This should be
done by the target before the `F' packet is sent resp. by GDB before it
transfers memory to the target. Transferred pointers to structured
data should point to the already coerced data at any time.
File: gdb.info, Node: The Ctrl-C message, Next: Console I/O, Prev: Memory transfer, Up: File-I/O remote protocol extension
D.7.6 The Ctrl-C message
------------------------
A special case is, if the CTRL-C FLAG is set in the GDB reply packet.
In this case the target should behave, as if it had gotten a break
message. The meaning for the target is "system call interupted by
`SIGINT'". Consequentially, the target should actually stop (as with a
break message) and return to GDB with a `T02' packet. In this case,
it's important for the target to know, in which state the system call
was interrupted. Since this action is by design not an atomic
operation, we have to differ between two cases:
* The system call hasn't been performed on the host yet.
* The system call on the host has been finished.
These two states can be distinguished by the target by the value of
the returned `errno'. If it's the protocol representation of `EINTR',
the system call hasn't been performed. This is equivalent to the
`EINTR' handling on POSIX systems. In any other case, the target may
presume that the system call has been finished -- successful or not --
and should behave as if the break message arrived right after the
system call.
GDB must behave reliable. If the system call has not been called
yet, GDB may send the `F' reply immediately, setting `EINTR' as `errno'
in the packet. If the system call on the host has been finished before
the user requests a break, the full action must be finshed by GDB.
This requires sending `M' or `X' packets as they fit. The `F' packet
may only be send when either nothing has happened or the full action
has been completed.
File: gdb.info, Node: Console I/O, Next: The isatty call, Prev: The Ctrl-C message, Up: File-I/O remote protocol extension
D.7.7 Console I/O
-----------------
By default and if not explicitely closed by the target system, the file
descriptors 0, 1 and 2 are connected to the GDB console. Output on the
GDB console is handled as any other file output operation (`write(1,
...)' or `write(2, ...)'). Console input is handled by GDB so that
after the target read request from file descriptor 0 all following
typing is buffered until either one of the following conditions is met:
* The user presses `Ctrl-C'. The behaviour is as explained above,
the `read' system call is treated as finished.
* The user presses `Enter'. This is treated as end of input with a
trailing line feed.
* The user presses `Ctrl-D'. This is treated as end of input. No
trailing character, especially no Ctrl-D is appended to the input.
If the user has typed more characters as fit in the buffer given to
the read call, the trailing characters are buffered in GDB until either
another `read(0, ...)' is requested by the target or debugging is
stopped on users request.
File: gdb.info, Node: The isatty call, Next: The system call, Prev: Console I/O, Up: File-I/O remote protocol extension
D.7.8 The isatty(3) call
------------------------
A special case in this protocol is the library call `isatty' which is
implemented as it's own call inside of this protocol. It returns 1 to
the target if the file descriptor given as parameter is attached to the
GDB console, 0 otherwise. Implementing through system calls would
require implementing `ioctl' and would be more complex than needed.
File: gdb.info, Node: The system call, Next: List of supported calls, Prev: The isatty call, Up: File-I/O remote protocol extension
D.7.9 The system(3) call
------------------------
The other special case in this protocol is the `system' call which is
implemented as it's own call, too. GDB is taking over the full task of
calling the necessary host calls to perform the `system' call. The
return value of `system' is simplified before it's returned to the
target. Basically, the only signal transmitted back is `EINTR' in case
the user pressed `Ctrl-C'. Otherwise the return value consists
entirely of the exit status of the called command.
Due to security concerns, the `system' call is refused to be called
by GDB by default. The user has to allow this call explicitly by
entering
``set remote system-call-allowed 1''
Disabling the `system' call is done by
``set remote system-call-allowed 0''
The current setting is shown by typing
``show remote system-call-allowed''
File: gdb.info, Node: List of supported calls, Next: Protocol specific representation of datatypes, Prev: The system call, Up: File-I/O remote protocol extension
D.7.10 List of supported calls
------------------------------
* Menu:
* open::
* close::
* read::
* write::
* lseek::
* rename::
* unlink::
* stat/fstat::
* gettimeofday::
* isatty::
* system::
File: gdb.info, Node: open, Next: close, Up: List of supported calls
open
....
Synopsis:
int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);
Request:
Fopen,pathptr/len,flags,mode
`flags' is the bitwise or of the following values:
`O_CREAT'
If the file does not exist it will be created. The host rules
apply as far as file ownership and time stamps are concerned.
`O_EXCL'
When used with O_CREAT, if the file already exists it is an error
and open() fails.
`O_TRUNC'
If the file already exists and the open mode allows writing
(O_RDWR or O_WRONLY is given) it will be truncated to length 0.
`O_APPEND'
The file is opened in append mode.
`O_RDONLY'
The file is opened for reading only.
`O_WRONLY'
The file is opened for writing only.
`O_RDWR'
The file is opened for reading and writing.
Each other bit is silently ignored.
`mode' is the bitwise or of the following values:
`S_IRUSR'
User has read permission.
`S_IWUSR'
User has write permission.
`S_IRGRP'
Group has read permission.
`S_IWGRP'
Group has write permission.
`S_IROTH'
Others have read permission.
`S_IWOTH'
Others have write permission.
Each other bit is silently ignored.
Return value:
open returns the new file descriptor or -1 if an error
occured.
Errors:
`EEXIST'
pathname already exists and O_CREAT and O_EXCL were used.
`EISDIR'
pathname refers to a directory.
`EACCES'
The requested access is not allowed.
`ENAMETOOLONG'
pathname was too long.
`ENOENT'
A directory component in pathname does not exist.
`ENODEV'
pathname refers to a device, pipe, named pipe or socket.
`EROFS'
pathname refers to a file on a read-only filesystem and write
access was requested.
`EFAULT'
pathname is an invalid pointer value.
`ENOSPC'
No space on device to create the file.
`EMFILE'
The process already has the maximum number of files open.
`ENFILE'
The limit on the total number of files open on the system has been
reached.
`EINTR'
The call was interrupted by the user.
File: gdb.info, Node: close, Next: read, Prev: open, Up: List of supported calls
close
.....
Synopsis:
int close(int fd);
Request:
Fclose,fd
Return value:
close returns zero on success, or -1 if an error occurred.
Errors:
`EBADF'
fd isn't a valid open file descriptor.
`EINTR'
The call was interrupted by the user.
File: gdb.info, Node: read, Next: write, Prev: close, Up: List of supported calls
read
....
Synopsis:
int read(int fd, void *buf, unsigned int count);
Request:
Fread,fd,bufptr,count
Return value:
On success, the number of bytes read is returned.
Zero indicates end of file. If count is zero, read
returns zero as well. On error, -1 is returned.
Errors:
`EBADF'
fd is not a valid file descriptor or is not open for reading.
`EFAULT'
buf is an invalid pointer value.
`EINTR'
The call was interrupted by the user.
File: gdb.info, Node: write, Next: lseek, Prev: read, Up: List of supported calls
write
.....
Synopsis:
int write(int fd, const void *buf, unsigned int count);
Request:
Fwrite,fd,bufptr,count
Return value:
On success, the number of bytes written are returned.
Zero indicates nothing was written. On error, -1
is returned.
Errors:
`EBADF'
fd is not a valid file descriptor or is not open for writing.
`EFAULT'
buf is an invalid pointer value.
`EFBIG'
An attempt was made to write a file that exceeds the host specific
maximum file size allowed.
`ENOSPC'
No space on device to write the data.
`EINTR'
The call was interrupted by the user.
File: gdb.info, Node: lseek, Next: rename, Prev: write, Up: List of supported calls
lseek
.....
Synopsis:
long lseek (int fd, long offset, int flag);
Request:
Flseek,fd,offset,flag
`flag' is one of:
`SEEK_SET'
The offset is set to offset bytes.
`SEEK_CUR'
The offset is set to its current location plus offset bytes.
`SEEK_END'
The offset is set to the size of the file plus offset bytes.
Return value:
On success, the resulting unsigned offset in bytes from
the beginning of the file is returned. Otherwise, a
value of -1 is returned.
Errors:
`EBADF'
fd is not a valid open file descriptor.
`ESPIPE'
fd is associated with the GDB console.
`EINVAL'
flag is not a proper value.
`EINTR'
The call was interrupted by the user.
File: gdb.info, Node: rename, Next: unlink, Prev: lseek, Up: List of supported calls
rename
......
Synopsis:
int rename(const char *oldpath, const char *newpath);
Request:
Frename,oldpathptr/len,newpathptr/len
Return value:
On success, zero is returned. On error, -1 is returned.
Errors:
`EISDIR'
newpath is an existing directory, but oldpath is not a directory.
`EEXIST'
newpath is a non-empty directory.
`EBUSY'
oldpath or newpath is a directory that is in use by some process.
`EINVAL'
An attempt was made to make a directory a subdirectory of itself.
`ENOTDIR'
A component used as a directory in oldpath or new path is not a
directory. Or oldpath is a directory and newpath exists but is
not a directory.
`EFAULT'
oldpathptr or newpathptr are invalid pointer values.
`EACCES'
No access to the file or the path of the file.
`ENAMETOOLONG'
oldpath or newpath was too long.
`ENOENT'
A directory component in oldpath or newpath does not exist.
`EROFS'
The file is on a read-only filesystem.
`ENOSPC'
The device containing the file has no room for the new directory
entry.
`EINTR'
The call was interrupted by the user.
File: gdb.info, Node: unlink, Next: stat/fstat, Prev: rename, Up: List of supported calls
unlink
......
Synopsis:
int unlink(const char *pathname);
Request:
Funlink,pathnameptr/len
Return value:
On success, zero is returned. On error, -1 is returned.
Errors:
`EACCES'
No access to the file or the path of the file.
`EPERM'
The system does not allow unlinking of directories.
`EBUSY'
The file pathname cannot be unlinked because it's being used by
another process.
`EFAULT'
pathnameptr is an invalid pointer value.
`ENAMETOOLONG'
pathname was too long.
`ENOENT'
A directory component in pathname does not exist.
`ENOTDIR'
A component of the path is not a directory.
`EROFS'
The file is on a read-only filesystem.
`EINTR'
The call was interrupted by the user.
File: gdb.info, Node: stat/fstat, Next: gettimeofday, Prev: unlink, Up: List of supported calls
stat/fstat
..........
Synopsis:
int stat(const char *pathname, struct stat *buf);
int fstat(int fd, struct stat *buf);
Request:
Fstat,pathnameptr/len,bufptr
Ffstat,fd,bufptr
Return value:
On success, zero is returned. On error, -1 is returned.
Errors:
`EBADF'
fd is not a valid open file.
`ENOENT'
A directory component in pathname does not exist or the path is an
empty string.
`ENOTDIR'
A component of the path is not a directory.
`EFAULT'
pathnameptr is an invalid pointer value.
`EACCES'
No access to the file or the path of the file.
`ENAMETOOLONG'
pathname was too long.
`EINTR'
The call was interrupted by the user.
File: gdb.info, Node: gettimeofday, Next: isatty, Prev: stat/fstat, Up: List of supported calls
gettimeofday
............
Synopsis:
int gettimeofday(struct timeval *tv, void *tz);
Request:
Fgettimeofday,tvptr,tzptr
Return value:
On success, 0 is returned, -1 otherwise.
Errors:
`EINVAL'
tz is a non-NULL pointer.
`EFAULT'
tvptr and/or tzptr is an invalid pointer value.
File: gdb.info, Node: isatty, Next: system, Prev: gettimeofday, Up: List of supported calls
isatty
......
Synopsis:
int isatty(int fd);
Request:
Fisatty,fd
Return value:
Returns 1 if fd refers to the GDB console, 0 otherwise.
Errors:
`EINTR'
The call was interrupted by the user.
File: gdb.info, Node: system, Prev: isatty, Up: List of supported calls
system
......
Synopsis:
int system(const char *command);
Request:
Fsystem,commandptr/len
Return value:
The value returned is -1 on error and the return status
of the command otherwise. Only the exit status of the
command is returned, which is extracted from the hosts
system return value by calling WEXITSTATUS(retval).
In case /bin/sh could not be executed, 127 is returned.
Errors:
`EINTR'
The call was interrupted by the user.
File: gdb.info, Node: Protocol specific representation of datatypes, Next: Constants, Prev: List of supported calls, Up: File-I/O remote protocol extension
D.7.11 Protocol specific representation of datatypes
----------------------------------------------------
* Menu:
* Integral datatypes::
* Pointer values::
* struct stat::
* struct timeval::
File: gdb.info, Node: Integral datatypes, Next: Pointer values, Up: Protocol specific representation of datatypes
Integral datatypes
..................
The integral datatypes used in the system calls are
int, unsigned int, long, unsigned long, mode_t and time_t
`Int', `unsigned int', `mode_t' and `time_t' are implemented as 32
bit values in this protocol.
`Long' and `unsigned long' are implemented as 64 bit types.
*Note Limits::, for corresponding MIN and MAX values (similar to
those in `limits.h') to allow range checking on host and target.
`time_t' datatypes are defined as seconds since the Epoch.
All integral datatypes transferred as part of a memory read or write
of a structured datatype e.g. a `struct stat' have to be given in big
endian byte order.
File: gdb.info, Node: Pointer values, Next: struct stat, Prev: Integral datatypes, Up: Protocol specific representation of datatypes
Pointer values
..............
Pointers to target data are transmitted as they are. An exception is
made for pointers to buffers for which the length isn't transmitted as
part of the function call, namely strings. Strings are transmitted as
a pointer/length pair, both as hex values, e.g.
`1aaf/12'
which is a pointer to data of length 18 bytes at position 0x1aaf. The
length is defined as the full string length in bytes, including the
trailing null byte. Example:
``hello, world'' at address 0x123456
is transmitted as
`123456/d'
File: gdb.info, Node: struct stat, Next: struct timeval, Prev: Pointer values, Up: Protocol specific representation of datatypes
struct stat
...........
The buffer of type struct stat used by the target and GDB is defined as
follows:
struct stat {
unsigned int st_dev; /* device */
unsigned int st_ino; /* inode */
mode_t st_mode; /* protection */
unsigned int st_nlink; /* number of hard links */
unsigned int st_uid; /* user ID of owner */
unsigned int st_gid; /* group ID of owner */
unsigned int st_rdev; /* device type (if inode device) */
unsigned long st_size; /* total size, in bytes */
unsigned long st_blksize; /* blocksize for filesystem I/O */
unsigned long st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */
};
The integral datatypes are conforming to the definitions given in the
approriate section (see *Note Integral datatypes::, for details) so this
structure is of size 64 bytes.
The values of several fields have a restricted meaning and/or range
of values.
st_dev: 0 file
1 console
st_ino: No valid meaning for the target. Transmitted unchanged.
st_mode: Valid mode bits are described in Appendix C. Any other
bits have currently no meaning for the target.
st_uid: No valid meaning for the target. Transmitted unchanged.
st_gid: No valid meaning for the target. Transmitted unchanged.
st_rdev: No valid meaning for the target. Transmitted unchanged.
st_atime, st_mtime, st_ctime:
These values have a host and file system dependent
accuracy. Especially on Windows hosts the file systems
don't support exact timing values.
The target gets a struct stat of the above representation and is
responsible to coerce it to the target representation before continuing.
Note that due to size differences between the host and target
representation of stat members, these members could eventually get
truncated on the target.
File: gdb.info, Node: struct timeval, Prev: struct stat, Up: Protocol specific representation of datatypes
struct timeval
..............
The buffer of type struct timeval used by the target and GDB is defined
as follows:
struct timeval {
time_t tv_sec; /* second */
long tv_usec; /* microsecond */
};
The integral datatypes are conforming to the definitions given in the
approriate section (see *Note Integral datatypes::, for details) so this
structure is of size 8 bytes.
File: gdb.info, Node: Constants, Next: File-I/O Examples, Prev: Protocol specific representation of datatypes, Up: File-I/O remote protocol extension
D.7.12 Constants
----------------
The following values are used for the constants inside of the protocol.
GDB and target are resposible to translate these values before and
after the call as needed.
* Menu:
* Open flags::
* mode_t values::
* Errno values::
* Lseek flags::
* Limits::
File: gdb.info, Node: Open flags, Next: mode_t values, Up: Constants
Open flags
..........
All values are given in hexadecimal representation.
O_RDONLY 0x0
O_WRONLY 0x1
O_RDWR 0x2
O_APPEND 0x8
O_CREAT 0x200
O_TRUNC 0x400
O_EXCL 0x800
File: gdb.info, Node: mode_t values, Next: Errno values, Prev: Open flags, Up: Constants
mode_t values
.............
All values are given in octal representation.
S_IFREG 0100000
S_IFDIR 040000
S_IRUSR 0400
S_IWUSR 0200
S_IXUSR 0100
S_IRGRP 040
S_IWGRP 020
S_IXGRP 010
S_IROTH 04
S_IWOTH 02
S_IXOTH 01
File: gdb.info, Node: Errno values, Next: Lseek flags, Prev: mode_t values, Up: Constants
Errno values
............
All values are given in decimal representation.
EPERM 1
ENOENT 2
EINTR 4
EBADF 9
EACCES 13
EFAULT 14
EBUSY 16
EEXIST 17
ENODEV 19
ENOTDIR 20
EISDIR 21
EINVAL 22
ENFILE 23
EMFILE 24
EFBIG 27
ENOSPC 28
ESPIPE 29
EROFS 30
ENAMETOOLONG 91
EUNKNOWN 9999
EUNKNOWN is used as a fallback error value if a host system returns
any error value not in the list of supported error numbers.
File: gdb.info, Node: Lseek flags, Next: Limits, Prev: Errno values, Up: Constants
Lseek flags
...........
SEEK_SET 0
SEEK_CUR 1
SEEK_END 2
File: gdb.info, Node: Limits, Prev: Lseek flags, Up: Constants
Limits
......
All values are given in decimal representation.
INT_MIN -2147483648
INT_MAX 2147483647
UINT_MAX 4294967295
LONG_MIN -9223372036854775808
LONG_MAX 9223372036854775807
ULONG_MAX 18446744073709551615
File: gdb.info, Node: File-I/O Examples, Prev: Constants, Up: File-I/O remote protocol extension
D.7.13 File-I/O Examples
------------------------
Example sequence of a write call, file descriptor 3, buffer is at target
address 0x1234, 6 bytes should be written:
<- `Fwrite,3,1234,6'
_request memory read from target_
-> `m1234,6'
<- XXXXXX
_return "6 bytes written"_
-> `F6'
Example sequence of a read call, file descriptor 3, buffer is at
target address 0x1234, 6 bytes should be read:
<- `Fread,3,1234,6'
_request memory write to target_
-> `X1234,6:XXXXXX'
_return "6 bytes read"_
-> `F6'
Example sequence of a read call, call fails on the host due to
invalid file descriptor (EBADF):
<- `Fread,3,1234,6'
-> `F-1,9'
Example sequence of a read call, user presses Ctrl-C before syscall
on host is called:
<- `Fread,3,1234,6'
-> `F-1,4,C'
<- `T02'
Example sequence of a read call, user presses Ctrl-C after syscall on
host is called:
<- `Fread,3,1234,6'
-> `X1234,6:XXXXXX'
<- `T02'
File: gdb.info, Node: Agent Expressions, Next: Copying, Prev: Remote Protocol, Up: Top
Appendix E The GDB Agent Expression Mechanism
*********************************************
In some applications, it is not feasable for the debugger to interrupt
the program's execution long enough for the developer to learn anything
helpful about its behavior. If the program's correctness depends on its
real-time behavior, delays introduced by a debugger might cause the
program to fail, even when the code itself is correct. It is useful to
be able to observe the program's behavior without interrupting it.
Using GDB's `trace' and `collect' commands, the user can specify
locations in the program, and arbitrary expressions to evaluate when
those locations are reached. Later, using the `tfind' command, she can
examine the values those expressions had when the program hit the trace
points. The expressions may also denote objects in memory --
structures or arrays, for example -- whose values GDB should record;
while visiting a particular tracepoint, the user may inspect those
objects as if they were in memory at that moment. However, because GDB
records these values without interacting with the user, it can do so
quickly and unobtrusively, hopefully not disturbing the program's
behavior.
When GDB is debugging a remote target, the GDB "agent" code running
on the target computes the values of the expressions itself. To avoid
having a full symbolic expression evaluator on the agent, GDB translates
expressions in the source language into a simpler bytecode language, and
then sends the bytecode to the agent; the agent then executes the
bytecode, and records the values for GDB to retrieve later.
The bytecode language is simple; there are forty-odd opcodes, the
bulk of which are the usual vocabulary of C operands (addition,
subtraction, shifts, and so on) and various sizes of literals and
memory reference operations. The bytecode interpreter operates
strictly on machine-level values -- various sizes of integers and
floating point numbers -- and requires no information about types or
symbols; thus, the interpreter's internal data structures are simple,
and each bytecode requires only a few native machine instructions to
implement it. The interpreter is small, and strict limits on the
memory and time required to evaluate an expression are easy to
determine, making it suitable for use by the debugging agent in
real-time applications.
* Menu:
* General Bytecode Design:: Overview of the interpreter.
* Bytecode Descriptions:: What each one does.
* Using Agent Expressions:: How agent expressions fit into the big picture.
* Varying Target Capabilities:: How to discover what the target can do.
* Tracing on Symmetrix:: Special info for implementation on EMC's
boxes.
* Rationale:: Why we did it this way.
File: gdb.info, Node: General Bytecode Design, Next: Bytecode Descriptions, Up: Agent Expressions
E.1 General Bytecode Design
===========================
The agent represents bytecode expressions as an array of bytes. Each
instruction is one byte long (thus the term "bytecode"). Some
instructions are followed by operand bytes; for example, the `goto'
instruction is followed by a destination for the jump.
The bytecode interpreter is a stack-based machine; most instructions
pop their operands off the stack, perform some operation, and push the
result back on the stack for the next instruction to consume. Each
element of the stack may contain either a integer or a floating point
value; these values are as many bits wide as the largest integer that
can be directly manipulated in the source language. Stack elements
carry no record of their type; bytecode could push a value as an
integer, then pop it as a floating point value. However, GDB will not
generate code which does this. In C, one might define the type of a
stack element as follows:
union agent_val {
LONGEST l;
DOUBLEST d;
};
where `LONGEST' and `DOUBLEST' are `typedef' names for the largest
integer and floating point types on the machine.
By the time the bytecode interpreter reaches the end of the
expression, the value of the expression should be the only value left
on the stack. For tracing applications, `trace' bytecodes in the
expression will have recorded the necessary data, and the value on the
stack may be discarded. For other applications, like conditional
breakpoints, the value may be useful.
Separate from the stack, the interpreter has two registers:
`pc'
The address of the next bytecode to execute.
`start'
The address of the start of the bytecode expression, necessary for
interpreting the `goto' and `if_goto' instructions.
Neither of these registers is directly visible to the bytecode
language itself, but they are useful for defining the meanings of the
bytecode operations.
There are no instructions to perform side effects on the running
program, or call the program's functions; we assume that these
expressions are only used for unobtrusive debugging, not for patching
the running code.
Most bytecode instructions do not distinguish between the various
sizes of values, and operate on full-width values; the upper bits of the
values are simply ignored, since they do not usually make a difference
to the value computed. The exceptions to this rule are:
memory reference instructions (`ref'N)
There are distinct instructions to fetch different word sizes from
memory. Once on the stack, however, the values are treated as
full-size integers. They may need to be sign-extended; the `ext'
instruction exists for this purpose.
the sign-extension instruction (`ext' N)
These clearly need to know which portion of their operand is to be
extended to occupy the full length of the word.
If the interpreter is unable to evaluate an expression completely for
some reason (a memory location is inaccessible, or a divisor is zero,
for example), we say that interpretation "terminates with an error".
This means that the problem is reported back to the interpreter's caller
in some helpful way. In general, code using agent expressions should
assume that they may attempt to divide by zero, fetch arbitrary memory
locations, and misbehave in other ways.
Even complicated C expressions compile to a few bytecode
instructions; for example, the expression `x + y * z' would typically
produce code like the following, assuming that `x' and `y' live in
registers, and `z' is a global variable holding a 32-bit `int':
reg 1
reg 2
const32 address of z
ref32
ext 32
mul
add
end
In detail, these mean:
`reg 1'
Push the value of register 1 (presumably holding `x') onto the
stack.
`reg 2'
Push the value of register 2 (holding `y').
`const32 address of z'
Push the address of `z' onto the stack.
`ref32'
Fetch a 32-bit word from the address at the top of the stack;
replace the address on the stack with the value. Thus, we replace
the address of `z' with `z''s value.
`ext 32'
Sign-extend the value on the top of the stack from 32 bits to full
length. This is necessary because `z' is a signed integer.
`mul'
Pop the top two numbers on the stack, multiply them, and push their
product. Now the top of the stack contains the value of the
expression `y * z'.
`add'
Pop the top two numbers, add them, and push the sum. Now the top
of the stack contains the value of `x + y * z'.
`end'
Stop executing; the value left on the stack top is the value to be
recorded.
File: gdb.info, Node: Bytecode Descriptions, Next: Using Agent Expressions, Prev: General Bytecode Design, Up: Agent Expressions
E.2 Bytecode Descriptions
=========================
Each bytecode description has the following form:
`add' (0x02): A B => A+B
Pop the top two stack items, A and B, as integers; push their sum,
as an integer.
In this example, `add' is the name of the bytecode, and `(0x02)' is
the one-byte value used to encode the bytecode, in hexidecimal. The
phrase "A B => A+B" shows the stack before and after the bytecode
executes. Beforehand, the stack must contain at least two values, A
and B; since the top of the stack is to the right, B is on the top of
the stack, and A is underneath it. After execution, the bytecode will
have popped A and B from the stack, and replaced them with a single
value, A+B. There may be other values on the stack below those shown,
but the bytecode affects only those shown.
Here is another example:
`const8' (0x22) N: => N
Push the 8-bit integer constant N on the stack, without sign
extension.
In this example, the bytecode `const8' takes an operand N directly
from the bytecode stream; the operand follows the `const8' bytecode
itself. We write any such operands immediately after the name of the
bytecode, before the colon, and describe the exact encoding of the
operand in the bytecode stream in the body of the bytecode description.
For the `const8' bytecode, there are no stack items given before the
=>; this simply means that the bytecode consumes no values from the
stack. If a bytecode consumes no values, or produces no values, the
list on either side of the => may be empty.
If a value is written as A, B, or N, then the bytecode treats it as
an integer. If a value is written is ADDR, then the bytecode treats it
as an address.
We do not fully describe the floating point operations here; although
this design can be extended in a clean way to handle floating point
values, they are not of immediate interest to the customer, so we avoid
describing them, to save time.
`float' (0x01): =>
Prefix for floating-point bytecodes. Not implemented yet.
`add' (0x02): A B => A+B
Pop two integers from the stack, and push their sum, as an integer.
`sub' (0x03): A B => A-B
Pop two integers from the stack, subtract the top value from the
next-to-top value, and push the difference.
`mul' (0x04): A B => A*B
Pop two integers from the stack, multiply them, and push the
product on the stack. Note that, when one multiplies two N-bit
numbers yielding another N-bit number, it is irrelevant whether the
numbers are signed or not; the results are the same.
`div_signed' (0x05): A B => A/B
Pop two signed integers from the stack; divide the next-to-top
value by the top value, and push the quotient. If the divisor is
zero, terminate with an error.
`div_unsigned' (0x06): A B => A/B
Pop two unsigned integers from the stack; divide the next-to-top
value by the top value, and push the quotient. If the divisor is
zero, terminate with an error.
`rem_signed' (0x07): A B => A MODULO B
Pop two signed integers from the stack; divide the next-to-top
value by the top value, and push the remainder. If the divisor is
zero, terminate with an error.
`rem_unsigned' (0x08): A B => A MODULO B
Pop two unsigned integers from the stack; divide the next-to-top
value by the top value, and push the remainder. If the divisor is
zero, terminate with an error.
`lsh' (0x09): A B => A< `(signed)'A>>B
Pop two integers from the stack; let A be the next-to-top value,
and B be the top value. Shift A right by B bits, inserting copies
of the top bit at the high end, and push the result.
`rsh_unsigned' (0x0b): A B => A>>B
Pop two integers from the stack; let A be the next-to-top value,
and B be the top value. Shift A right by B bits, inserting zero
bits at the high end, and push the result.
`log_not' (0x0e): A => !A
Pop an integer from the stack; if it is zero, push the value one;
otherwise, push the value zero.
`bit_and' (0x0f): A B => A&B
Pop two integers from the stack, and push their bitwise `and'.
`bit_or' (0x10): A B => A|B
Pop two integers from the stack, and push their bitwise `or'.
`bit_xor' (0x11): A B => A^B
Pop two integers from the stack, and push their bitwise
exclusive-`or'.
`bit_not' (0x12): A => ~A
Pop an integer from the stack, and push its bitwise complement.
`equal' (0x13): A B => A=B
Pop two integers from the stack; if they are equal, push the value
one; otherwise, push the value zero.
`less_signed' (0x14): A B => A A A, sign-extended from N bits
Pop an unsigned value from the stack; treating it as an N-bit
twos-complement value, extend it to full length. This means that
all bits to the left of bit N-1 (where the least significant bit
is bit 0) are set to the value of bit N-1. Note that N may be
larger than or equal to the width of the stack elements of the
bytecode engine; in this case, the bytecode should have no effect.
The number of source bits to preserve, N, is encoded as a single
byte unsigned integer following the `ext' bytecode.
`zero_ext' (0x2a) N: A => A, zero-extended from N bits
Pop an unsigned value from the stack; zero all but the bottom N
bits. This means that all bits to the left of bit N-1 (where the
least significant bit is bit 0) are set to the value of bit N-1.
The number of source bits to preserve, N, is encoded as a single
byte unsigned integer following the `zero_ext' bytecode.
`ref8' (0x17): ADDR => A
`ref16' (0x18): ADDR => A
`ref32' (0x19): ADDR => A
`ref64' (0x1a): ADDR => A
Pop an address ADDR from the stack. For bytecode `ref'N, fetch an
N-bit value from ADDR, using the natural target endianness. Push
the fetched value as an unsigned integer.
Note that ADDR may not be aligned in any particular way; the
`refN' bytecodes should operate correctly for any address.
If attempting to access memory at ADDR would cause a processor
exception of some sort, terminate with an error.
`ref_float' (0x1b): ADDR => D
`ref_double' (0x1c): ADDR => D
`ref_long_double' (0x1d): ADDR => D
`l_to_d' (0x1e): A => D
`d_to_l' (0x1f): D => A
Not implemented yet.
`dup' (0x28): A => A A
Push another copy of the stack's top element.
`swap' (0x2b): A B => B A
Exchange the top two items on the stack.
`pop' (0x29): A =>
Discard the top value on the stack.
`if_goto' (0x20) OFFSET: A =>
Pop an integer off the stack; if it is non-zero, branch to the
given offset in the bytecode string. Otherwise, continue to the
next instruction in the bytecode stream. In other words, if A is
non-zero, set the `pc' register to `start' + OFFSET. Thus, an
offset of zero denotes the beginning of the expression.
The OFFSET is stored as a sixteen-bit unsigned value, stored
immediately following the `if_goto' bytecode. It is always stored
most significant byte first, regardless of the target's normal
endianness. The offset is not guaranteed to fall at any particular
alignment within the bytecode stream; thus, on machines where
fetching a 16-bit on an unaligned address raises an exception, you
should fetch the offset one byte at a time.
`goto' (0x21) OFFSET: =>
Branch unconditionally to OFFSET; in other words, set the `pc'
register to `start' + OFFSET.
The offset is stored in the same way as for the `if_goto' bytecode.
`const8' (0x22) N: => N
`const16' (0x23) N: => N
`const32' (0x24) N: => N
`const64' (0x25) N: => N
Push the integer constant N on the stack, without sign extension.
To produce a small negative value, push a small twos-complement
value, and then sign-extend it using the `ext' bytecode.
The constant N is stored in the appropriate number of bytes
following the `const'B bytecode. The constant N is always stored
most significant byte first, regardless of the target's normal
endianness. The constant is not guaranteed to fall at any
particular alignment within the bytecode stream; thus, on machines
where fetching a 16-bit on an unaligned address raises an
exception, you should fetch N one byte at a time.
`reg' (0x26) N: => A
Push the value of register number N, without sign extension. The
registers are numbered following GDB's conventions.
The register number N is encoded as a 16-bit unsigned integer
immediately following the `reg' bytecode. It is always stored most
significant byte first, regardless of the target's normal
endianness. The register number is not guaranteed to fall at any
particular alignment within the bytecode stream; thus, on machines
where fetching a 16-bit on an unaligned address raises an
exception, you should fetch the register number one byte at a time.
`trace' (0x0c): ADDR SIZE =>
Record the contents of the SIZE bytes at ADDR in a trace buffer,
for later retrieval by GDB.
`trace_quick' (0x0d) SIZE: ADDR => ADDR
Record the contents of the SIZE bytes at ADDR in a trace buffer,
for later retrieval by GDB. SIZE is a single byte unsigned
integer following the `trace' opcode.
This bytecode is equivalent to the sequence `dup const8 SIZE
trace', but we provide it anyway to save space in bytecode strings.
`trace16' (0x30) SIZE: ADDR => ADDR
Identical to trace_quick, except that SIZE is a 16-bit big-endian
unsigned integer, not a single byte. This should probably have
been named `trace_quick16', for consistency.
`end' (0x27): =>
Stop executing bytecode; the result should be the top element of
the stack. If the purpose of the expression was to compute an
lvalue or a range of memory, then the next-to-top of the stack is
the lvalue's address, and the top of the stack is the lvalue's
size, in bytes.
File: gdb.info, Node: Using Agent Expressions, Next: Varying Target Capabilities, Prev: Bytecode Descriptions, Up: Agent Expressions
E.3 Using Agent Expressions
===========================
Here is a sketch of a full non-stop debugging cycle, showing how agent
expressions fit into the process.
* The user selects trace points in the program's code at which GDB
should collect data.
* The user specifies expressions to evaluate at each trace point.
These expressions may denote objects in memory, in which case
those objects' contents are recorded as the program runs, or
computed values, in which case the values themselves are recorded.
* GDB transmits the tracepoints and their associated expressions to
the GDB agent, running on the debugging target.
* The agent arranges to be notified when a trace point is hit. Note
that, on some systems, the target operating system is completely
responsible for collecting the data; see *Note Tracing on
Symmetrix::.
* When execution on the target reaches a trace point, the agent
evaluates the expressions associated with that trace point, and
records the resulting values and memory ranges.
* Later, when the user selects a given trace event and inspects the
objects and expression values recorded, GDB talks to the agent to
retrieve recorded data as necessary to meet the user's requests.
If the user asks to see an object whose contents have not been
recorded, GDB reports an error.
File: gdb.info, Node: Varying Target Capabilities, Next: Tracing on Symmetrix, Prev: Using Agent Expressions, Up: Agent Expressions
E.4 Varying Target Capabilities
===============================
Some targets don't support floating-point, and some would rather not
have to deal with `long long' operations. Also, different targets will
have different stack sizes, and different bytecode buffer lengths.
Thus, GDB needs a way to ask the target about itself. We haven't
worked out the details yet, but in general, GDB should be able to send
the target a packet asking it to describe itself. The reply should be a
packet whose length is explicit, so we can add new information to the
packet in future revisions of the agent, without confusing old versions
of GDB, and it should contain a version number. It should contain at
least the following information:
* whether floating point is supported
* whether `long long' is supported
* maximum acceptable size of bytecode stack
* maximum acceptable length of bytecode expressions
* which registers are actually available for collection
* whether the target supports disabled tracepoints
File: gdb.info, Node: Tracing on Symmetrix, Next: Rationale, Prev: Varying Target Capabilities, Up: Agent Expressions
E.5 Tracing on Symmetrix
========================
This section documents the API used by the GDB agent to collect data on
Symmetrix systems.
Cygnus originally implemented these tracing features to help EMC
Corporation debug their Symmetrix high-availability disk drives. The
Symmetrix application code already includes substantial tracing
facilities; the GDB agent for the Symmetrix system uses those facilities
for its own data collection, via the API described here.
-- Function: DTC_RESPONSE adbg_find_memory_in_frame (FRAME_DEF *FRAME,
char *ADDRESS, char **BUFFER, unsigned int *SIZE)
Search the trace frame FRAME for memory saved from ADDRESS. If
the memory is available, provide the address of the buffer holding
it; otherwise, provide the address of the next saved area.
* If the memory at ADDRESS was saved in FRAME, set `*BUFFER' to
point to the buffer in which that memory was saved, set
`*SIZE' to the number of bytes from ADDRESS that are saved at
`*BUFFER', and return `OK_TARGET_RESPONSE'. (Clearly, in
this case, the function will always set `*SIZE' to a value
greater than zero.)
* If FRAME does not record any memory at ADDRESS, set `*SIZE'
to the distance from ADDRESS to the start of the saved region
with the lowest address higher than ADDRESS. If there is no
memory saved from any higher address, set `*SIZE' to zero.
Return `NOT_FOUND_TARGET_RESPONSE'.
These two possibilities allow the caller to either retrieve the
data, or walk the address space to the next saved area.
This function allows the GDB agent to map the regions of memory
saved in a particular frame, and retrieve their contents efficiently.
This function also provides a clean interface between the GDB agent
and the Symmetrix tracing structures, making it easier to adapt the GDB
agent to future versions of the Symmetrix system, and vice versa. This
function searches all data saved in FRAME, whether the data is there at
the request of a bytecode expression, or because it falls in one of the
format's memory ranges, or because it was saved from the top of the
stack. EMC can arbitrarily change and enhance the tracing mechanism,
but as long as this function works properly, all collected memory is
visible to GDB.
The function itself is straightforward to implement. A single pass
over the trace frame's stack area, memory ranges, and expression blocks
can yield the address of the buffer (if the requested address was
saved), and also note the address of the next higher range of memory,
to be returned when the search fails.
As an example, suppose the trace frame `f' has saved sixteen bytes
from address `0x8000' in a buffer at `0x1000', and thirty-two bytes
from address `0xc000' in a buffer at `0x1010'. Here are some sample
calls, and the effect each would have:
`adbg_find_memory_in_frame (f, (char*) 0x8000, &buffer, &size)'
This would set `buffer' to `0x1000', set `size' to sixteen, and
return `OK_TARGET_RESPONSE', since `f' saves sixteen bytes from
`0x8000' at `0x1000'.
`adbg_find_memory_in_frame (f, (char *) 0x8004, &buffer, &size)'
This would set `buffer' to `0x1004', set `size' to twelve, and
return `OK_TARGET_RESPONSE', since `f' saves the twelve bytes from
`0x8004' starting four bytes into the buffer at `0x1000'. This
shows that request addresses may fall in the middle of saved
areas; the function should return the address and size of the
remainder of the buffer.
`adbg_find_memory_in_frame (f, (char *) 0x8100, &buffer, &size)'
This would set `size' to `0x3f00' and return
`NOT_FOUND_TARGET_RESPONSE', since there is no memory saved in `f'
from the address `0x8100', and the next memory available is at
`0x8100 + 0x3f00', or `0xc000'. This shows that request addresses
may fall outside of all saved memory ranges; the function should
indicate the next saved area, if any.
`adbg_find_memory_in_frame (f, (char *) 0x7000, &buffer, &size)'
This would set `size' to `0x1000' and return
`NOT_FOUND_TARGET_RESPONSE', since the next saved memory is at
`0x7000 + 0x1000', or `0x8000'.
`adbg_find_memory_in_frame (f, (char *) 0xf000, &buffer, &size)'
This would set `size' to zero, and return
`NOT_FOUND_TARGET_RESPONSE'. This shows how the function tells the
caller that no further memory ranges have been saved.
As another example, here is a function which will print out the
addresses of all memory saved in the trace frame `frame' on the
Symmetrix INLINES console:
void
print_frame_addresses (FRAME_DEF *frame)
{
char *addr;
char *buffer;
unsigned long size;
addr = 0;
for (;;)
{
/* Either find out how much memory we have here, or discover
where the next saved region is. */
if (adbg_find_memory_in_frame (frame, addr, &buffer, &size)
== OK_TARGET_RESPONSE)
printp ("saved %x to %x\n", addr, addr + size);
if (size == 0)
break;
addr += size;
}
}
Note that there is not necessarily any connection between the order
in which the data is saved in the trace frame, and the order in which
`adbg_find_memory_in_frame' will return those memory ranges. The code
above will always print the saved memory regions in order of increasing
address, while the underlying frame structure might store the data in a
random order.
[[This section should cover the rest of the Symmetrix functions the
stub relies upon, too.]]
File: gdb.info, Node: Rationale, Prev: Tracing on Symmetrix, Up: Agent Expressions
E.6 Rationale
=============
Some of the design decisions apparent above are arguable.
What about stack overflow/underflow?
GDB should be able to query the target to discover its stack size.
Given that information, GDB can determine at translation time
whether a given expression will overflow the stack. But this spec
isn't about what kinds of error-checking GDB ought to do.
Why are you doing everything in LONGEST?
Speed isn't important, but agent code size is; using LONGEST
brings in a bunch of support code to do things like division, etc.
So this is a serious concern.
First, note that you don't need different bytecodes for different
operand sizes. You can generate code without _knowing_ how big the
stack elements actually are on the target. If the target only
supports 32-bit ints, and you don't send any 64-bit bytecodes,
everything just works. The observation here is that the MIPS and
the Alpha have only fixed-size registers, and you can still get
C's semantics even though most instructions only operate on
full-sized words. You just need to make sure everything is
properly sign-extended at the right times. So there is no need
for 32- and 64-bit variants of the bytecodes. Just implement
everything using the largest size you support.
GDB should certainly check to see what sizes the target supports,
so the user can get an error earlier, rather than later. But this
information is not necessary for correctness.
Why don't you have `>' or `<=' operators?
I want to keep the interpreter small, and we don't need them. We
can combine the `less_' opcodes with `log_not', and swap the order
of the operands, yielding all four asymmetrical comparison
operators. For example, `(x <= y)' is `! (x > y)', which is `! (y
< x)'.
Why do you have `log_not'?
Why do you have `ext'?
Why do you have `zero_ext'?
These are all easily synthesized from other instructions, but I
expect them to be used frequently, and they're simple, so I
include them to keep bytecode strings short.
`log_not' is equivalent to `const8 0 equal'; it's used in half the
relational operators.
`ext N' is equivalent to `const8 S-N lsh const8 S-N rsh_signed',
where S is the size of the stack elements; it follows `refM' and
REG bytecodes when the value should be signed. See the next
bulleted item.
`zero_ext N' is equivalent to `constM MASK log_and'; it's used
whenever we push the value of a register, because we can't assume
the upper bits of the register aren't garbage.
Why not have sign-extending variants of the `ref' operators?
Because that would double the number of `ref' operators, and we
need the `ext' bytecode anyway for accessing bitfields.
Why not have constant-address variants of the `ref' operators?
Because that would double the number of `ref' operators again, and
`const32 ADDRESS ref32' is only one byte longer.
Why do the `refN' operators have to support unaligned fetches?
GDB will generate bytecode that fetches multi-byte values at
unaligned addresses whenever the executable's debugging
information tells it to. Furthermore, GDB does not know the value
the pointer will have when GDB generates the bytecode, so it
cannot determine whether a particular fetch will be aligned or not.
In particular, structure bitfields may be several bytes long, but
follow no alignment rules; members of packed structures are not
necessarily aligned either.
In general, there are many cases where unaligned references occur
in correct C code, either at the programmer's explicit request, or
at the compiler's discretion. Thus, it is simpler to make the GDB
agent bytecodes work correctly in all circumstances than to make
GDB guess in each case whether the compiler did the usual thing.
Why are there no side-effecting operators?
Because our current client doesn't want them? That's a cheap
answer. I think the real answer is that I'm afraid of
implementing function calls. We should re-visit this issue after
the present contract is delivered.
Why aren't the `goto' ops PC-relative?
The interpreter has the base address around anyway for PC bounds
checking, and it seemed simpler.
Why is there only one offset size for the `goto' ops?
Offsets are currently sixteen bits. I'm not happy with this
situation either:
Suppose we have multiple branch ops with different offset sizes.
As I generate code left-to-right, all my jumps are forward jumps
(there are no loops in expressions), so I never know the target
when I emit the jump opcode. Thus, I have to either always assume
the largest offset size, or do jump relaxation on the code after I
generate it, which seems like a big waste of time.
I can imagine a reasonable expression being longer than 256 bytes.
I can't imagine one being longer than 64k. Thus, we need 16-bit
offsets. This kind of reasoning is so bogus, but relaxation is
pathetic.
The other approach would be to generate code right-to-left. Then
I'd always know my offset size. That might be fun.
Where is the function call bytecode?
When we add side-effects, we should add this.
Why does the `reg' bytecode take a 16-bit register number?
Intel's IA-64 architecture has 128 general-purpose registers, and
128 floating-point registers, and I'm sure it has some random
control registers.
Why do we need `trace' and `trace_quick'?
Because GDB needs to record all the memory contents and registers
an expression touches. If the user wants to evaluate an expression
`x->y->z', the agent must record the values of `x' and `x->y' as
well as the value of `x->y->z'.
Don't the `trace' bytecodes make the interpreter less general?
They do mean that the interpreter contains special-purpose code,
but that doesn't mean the interpreter can only be used for that
purpose. If an expression doesn't use the `trace' bytecodes, they
don't get in its way.
Why doesn't `trace_quick' consume its arguments the way everything else does?
In general, you do want your operators to consume their arguments;
it's consistent, and generally reduces the amount of stack
rearrangement necessary. However, `trace_quick' is a kludge to
save space; it only exists so we needn't write `dup const8 SIZE
trace' before every memory reference. Therefore, it's okay for it
not to consume its arguments; it's meant for a specific context in
which we know exactly what it should do with the stack. If we're
going to have a kludge, it should be an effective kludge.
Why does `trace16' exist?
That opcode was added by the customer that contracted Cygnus for
the data tracing work. I personally think it is unnecessary;
objects that large will be quite rare, so it is okay to use `dup
const16 SIZE trace' in those cases.
Whatever we decide to do with `trace16', we should at least leave
opcode 0x30 reserved, to remain compatible with the customer who
added it.
File: gdb.info, Node: Copying, Next: GNU Free Documentation License, Prev: Agent Expressions, Up: Top
Appendix F GNU GENERAL PUBLIC LICENSE
*************************************
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
========
The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on
the Program" means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is
included without limitation in the term "modification".) Each
licensee is addressed as "you".
Activities other than copying, distribution and modification are
not covered by this License; they are outside its scope. The act
of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of
this License along with the Program.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange
for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that
in whole or in part contains or is derived from the Program
or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.
c. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display
an announcement including an appropriate copyright notice and
a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an
announcement, your work based on the Program is not required
to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a
whole which is a work based on the Program, the distribution of
the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or
contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program) on
a volume of a storage or distribution medium does not bring the
other work under the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you also do one of the
following:
a. Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for
software interchange; or,
b. Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,
c. Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete
source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need
not include anything that is normally distributed (in either
source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights,
from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify
or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any
further restrictions on the recipients' exercise of the rights
granted herein. You are not responsible for enforcing compliance
by third parties to this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section is
intended to apply and the section as a whole is intended to apply
in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of
any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a
licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces,
the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of
this License.
9. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies a version number of this License which applies
to it and "any later version", you have the option of following
the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of
all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
=============================================
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
Copyright (C) YEAR NAME OF AUTHOR
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
Also add information on how to contact you by electronic and paper
mail.
If the program is interactive, make it output a short notice like
this when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) YEAR NAME OF AUTHOR
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the
appropriate parts of the General Public License. Of course, the
commands you use may be called something other than `show w' and `show
c'; they could even be mouse-clicks or menu items--whatever suits your
program.
You should also get your employer (if you work as a programmer) or
your school, if any, to sign a "copyright disclaimer" for the program,
if necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
SIGNATURE OF TY COON, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.
File: gdb.info, Node: GNU Free Documentation License, Next: Index, Prev: Copying, Up: Top
Appendix G GNU Free Documentation License
*****************************************
Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.
This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense.
It complements the GNU General Public License, which is a copyleft
license designed for free software.
We have designed this License in order to use it for manuals for
free software, because free software needs free documentation: a
free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book.
We recommend this License principally for works whose purpose is
instruction or reference.
1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it
can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as "you". You
accept the license if you copy, modify or distribute the work in a
way requiring permission under copyright law.
A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document
is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or
of legal, commercial, philosophical, ethical or political position
regarding them.
The "Invariant Sections" are certain Secondary Sections whose
titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under this
License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.
The "Cover Texts" are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is
not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format,
SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include
PNG, XCF and JPG. Opaque formats include proprietary formats that
can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.
The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title
Page" means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text.
A section "Entitled XYZ" means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses
following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".)
To "Preserve the Title" of such a section when you modify the
Document means that it remains a section "Entitled XYZ" according
to this definition.
The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These
Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and
has no effect on the meaning of this License.
2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow
the conditions in section 3.
You may also lend copies, under the same conditions stated above,
and you may publicly display copies.
3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly
have printed covers) of the Document, numbering more than 100, and
the Document's license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the
title equally prominent and visible. You may add other material
on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in
other respects.
If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document
numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download
using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of
the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated
version of the Document.
4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document
under the conditions of sections 2 and 3 above, provided that you
release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the
same title as a previous version if the original publisher of
that version gives permission.
B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the
principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you
from this requirement.
C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in
the Addendum below.
G. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document's
license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title,
and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "History" in
the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in
the previous sentence.
J. Preserve the network location, if any, given in the Document
for public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for
previous versions it was based on. These may be placed in
the "History" section. You may omit a network location for a
work that was published at least four years before the
Document itself, or if the original publisher of the version
it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section, and preserve in the
section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section
titles.
M. Delete any section Entitled "Endorsements". Such a section
may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled
"Endorsements" or to conflict in title with any Invariant
Section.
O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified
Version's license notice. These titles must be distinct from any
other section titles.
You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text
has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end
of the list of Cover Texts in the Modified Version. Only one
passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous
publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this
License give permission to use their names for publicity for or to
assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS
You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for
modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all
their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique
by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the
combined work.
In the combination, you must combine any sections Entitled
"History" in the various original documents, forming one section
Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You
must delete all sections Entitled "Endorsements."
6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the
documents in all other respects.
You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert
a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of
that document.
7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a volume of
a storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the
legal rights of the compilation's users beyond what the individual
works permit. When the Document is included in an aggregate, this
License does not apply to the other works in the aggregate which
are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half
of the entire aggregate, the Document's Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket
the whole aggregate.
8. TRANSLATION
Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section
4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the
original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of
this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the
actual title.
9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document
except as expressly provided for under this License. Any other
attempt to copy, modify, sublicense or distribute the Document is
void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights,
from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
`http://www.gnu.org/copyleft/'.
Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it, you
have the option of following the terms and conditions either of
that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the
Free Software Foundation.
G.1 ADDENDUM: How to use this License for your documents
========================================================
To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:
Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.
If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover Texts
being LIST.
If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.
If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License, to
permit their use in free software.
File: gdb.info, Node: Index, Prev: GNU Free Documentation License, Up: Top
Index
*****
* Menu:
* ! packet: Packets. (line 10)
* "No symbol "foo" in current context": Variables. (line 74)
* # (a comment): Command Syntax. (line 36)
* # in Modula-2: GDB/M2. (line 18)
* $: Value History. (line 13)
* $$: Value History. (line 13)
* $_ and info breakpoints: Set Breaks. (line 134)
* $_ and info line: Machine Code. (line 30)
* $_, $__, and value history: Memory. (line 86)
* $_, convenience variable: Convenience Vars. (line 53)
* $__, convenience variable: Convenience Vars. (line 62)
* $_exitcode, convenience variable: Convenience Vars. (line 68)
* $bpnum, convenience variable: Set Breaks. (line 6)
* $cdir, convenience variable: Source Path. (line 53)
* $cwdr, convenience variable: Source Path. (line 53)
* $tpnum: Create and Delete Tracepoints.
(line 31)
* $trace_file: Tracepoint Variables.
(line 16)
* $trace_frame: Tracepoint Variables.
(line 6)
* $trace_func: Tracepoint Variables.
(line 19)
* $trace_line: Tracepoint Variables.
(line 13)
* $tracepoint: Tracepoint Variables.
(line 10)
* --annotate: Mode Options. (line 71)
* --args: Mode Options. (line 84)
* --batch: Mode Options. (line 23)
* --baud: Mode Options. (line 90)
* --cd: Mode Options. (line 50)
* --command: File Options. (line 55)
* --core: File Options. (line 43)
* --directory: File Options. (line 60)
* --epoch: Mode Options. (line 66)
* --exec: File Options. (line 35)
* --fullname: Mode Options. (line 55)
* --interpreter: Mode Options. (line 107)
* --mapped: File Options. (line 64)
* --nowindows: Mode Options. (line 40)
* --nx: Mode Options. (line 11)
* --pid: File Options. (line 49)
* --quiet: Mode Options. (line 19)
* --readnever: File Options. (line 87)
* --readnow: File Options. (line 81)
* --se: File Options. (line 39)
* --silent: Mode Options. (line 19)
* --statistics: Mode Options. (line 124)
* --symbols: File Options. (line 31)
* --tty: Mode Options. (line 95)
* --tui: Mode Options. (line 98)
* --version: Mode Options. (line 128)
* --windows: Mode Options. (line 46)
* --write: Mode Options. (line 119)
* -b: Mode Options. (line 90)
* -break-after: GDB/MI Breakpoint Table Commands.
(line 11)
* -break-condition: GDB/MI Breakpoint Table Commands.
(line 53)
* -break-delete: GDB/MI Breakpoint Table Commands.
(line 90)
* -break-disable: GDB/MI Breakpoint Table Commands.
(line 124)
* -break-enable: GDB/MI Breakpoint Table Commands.
(line 159)
* -break-info: GDB/MI Breakpoint Table Commands.
(line 193)
* -break-insert: GDB/MI Breakpoint Table Commands.
(line 213)
* -break-list: GDB/MI Breakpoint Table Commands.
(line 301)
* -break-watch: GDB/MI Breakpoint Table Commands.
(line 375)
* -c: File Options. (line 43)
* -d: File Options. (line 60)
* -data-disassemble: GDB/MI Data Manipulation.
(line 12)
* -data-evaluate-expression: GDB/MI Data Manipulation.
(line 140)
* -data-list-changed-registers: GDB/MI Data Manipulation.
(line 178)
* -data-list-register-names: GDB/MI Data Manipulation.
(line 213)
* -data-list-register-values: GDB/MI Data Manipulation.
(line 253)
* -data-read-memory: GDB/MI Data Manipulation.
(line 343)
* -display-delete: GDB/MI Data Manipulation.
(line 448)
* -display-disable: GDB/MI Data Manipulation.
(line 468)
* -display-enable: GDB/MI Data Manipulation.
(line 488)
* -display-insert: GDB/MI Data Manipulation.
(line 508)
* -display-list: GDB/MI Data Manipulation.
(line 528)
* -e: File Options. (line 35)
* -environment-cd: GDB/MI Data Manipulation.
(line 548)
* -environment-directory: GDB/MI Data Manipulation.
(line 571)
* -environment-path: GDB/MI Data Manipulation.
(line 615)
* -environment-pwd: GDB/MI Data Manipulation.
(line 656)
* -exec-abort: GDB/MI Program Control.
(line 46)
* -exec-arguments: GDB/MI Program Control.
(line 66)
* -exec-continue: GDB/MI Program Control.
(line 87)
* -exec-finish: GDB/MI Program Control.
(line 114)
* -exec-interrupt: GDB/MI Program Control.
(line 156)
* -exec-next: GDB/MI Program Control.
(line 196)
* -exec-next-instruction: GDB/MI Program Control.
(line 221)
* -exec-return: GDB/MI Program Control.
(line 251)
* -exec-run: GDB/MI Program Control.
(line 292)
* -exec-show-arguments: GDB/MI Program Control.
(line 323)
* -exec-step: GDB/MI Program Control.
(line 343)
* -exec-step-instruction: GDB/MI Program Control.
(line 382)
* -exec-until: GDB/MI Program Control.
(line 420)
* -f: Mode Options. (line 55)
* -file-exec-and-symbols: GDB/MI Program Control.
(line 451)
* -file-exec-file: GDB/MI Program Control.
(line 479)
* -file-list-exec-sections: GDB/MI Program Control.
(line 506)
* -file-list-exec-source-file: GDB/MI Program Control.
(line 527)
* -file-list-exec-source-files: GDB/MI Program Control.
(line 551)
* -file-list-shared-libraries: GDB/MI Program Control.
(line 581)
* -file-list-symbol-files: GDB/MI Program Control.
(line 601)
* -file-symbol-file: GDB/MI Program Control.
(line 621)
* -gdb-exit: GDB/MI Miscellaneous Commands.
(line 9)
* -gdb-set: GDB/MI Miscellaneous Commands.
(line 30)
* -gdb-show: GDB/MI Miscellaneous Commands.
(line 53)
* -gdb-version: GDB/MI Miscellaneous Commands.
(line 76)
* -interpreter-exec: GDB/MI Miscellaneous Commands.
(line 110)
* -m: File Options. (line 64)
* -n: Mode Options. (line 11)
* -nw: Mode Options. (line 40)
* -p: File Options. (line 49)
* -q: Mode Options. (line 19)
* -r: File Options. (line 81)
* -s: File Options. (line 31)
* -stack-info-depth: GDB/MI Stack Manipulation.
(line 30)
* -stack-info-frame: GDB/MI Stack Manipulation.
(line 9)
* -stack-list-arguments: GDB/MI Stack Manipulation.
(line 68)
* -stack-list-frames: GDB/MI Stack Manipulation.
(line 143)
* -stack-list-locals: GDB/MI Stack Manipulation.
(line 236)
* -stack-select-frame: GDB/MI Stack Manipulation.
(line 273)
* -symbol-info-address: GDB/MI Symbol Query. (line 9)
* -symbol-info-file: GDB/MI Symbol Query. (line 29)
* -symbol-info-function: GDB/MI Symbol Query. (line 49)
* -symbol-info-line: GDB/MI Symbol Query. (line 69)
* -symbol-info-symbol: GDB/MI Symbol Query. (line 90)
* -symbol-list-functions: GDB/MI Symbol Query. (line 110)
* -symbol-list-lines: GDB/MI Symbol Query. (line 130)
* -symbol-list-types: GDB/MI Symbol Query. (line 155)
* -symbol-list-variables: GDB/MI Symbol Query. (line 176)
* -symbol-locate: GDB/MI Symbol Query. (line 196)
* -symbol-type: GDB/MI Symbol Query. (line 214)
* -t: Mode Options. (line 95)
* -target-attach: GDB/MI Target Manipulation.
(line 9)
* -target-compare-sections: GDB/MI Target Manipulation.
(line 29)
* -target-detach: GDB/MI Target Manipulation.
(line 50)
* -target-disconnect: GDB/MI Target Manipulation.
(line 73)
* -target-download: GDB/MI Target Manipulation.
(line 96)
* -target-exec-status: GDB/MI Target Manipulation.
(line 199)
* -target-list-available-targets: GDB/MI Target Manipulation.
(line 220)
* -target-list-current-targets: GDB/MI Target Manipulation.
(line 240)
* -target-list-parameters: GDB/MI Target Manipulation.
(line 261)
* -target-select: GDB/MI Target Manipulation.
(line 279)
* -thread-info: GDB/MI Thread Commands.
(line 9)
* -thread-list-all-threads: GDB/MI Thread Commands.
(line 27)
* -thread-list-ids: GDB/MI Thread Commands.
(line 45)
* -thread-select: GDB/MI Thread Commands.
(line 79)
* -var-assign: GDB/MI Variable Objects.
(line 264)
* -var-create: GDB/MI Variable Objects.
(line 86)
* -var-delete: GDB/MI Variable Objects.
(line 127)
* -var-evaluate-expression: GDB/MI Variable Objects.
(line 247)
* -var-info-expression: GDB/MI Variable Objects.
(line 219)
* -var-info-num-children: GDB/MI Variable Objects.
(line 168)
* -var-info-type: GDB/MI Variable Objects.
(line 206)
* -var-list-children: GDB/MI Variable Objects.
(line 180)
* -var-set-format: GDB/MI Variable Objects.
(line 139)
* -var-show-attributes: GDB/MI Variable Objects.
(line 233)
* -var-show-format: GDB/MI Variable Objects.
(line 155)
* -var-update: GDB/MI Variable Objects.
(line 288)
* -w: Mode Options. (line 46)
* -x: File Options. (line 55)
* ., Modula-2 scope operator: M2 Scope. (line 6)
* .debug subdirectories: Separate Debug Files.
(line 6)
* .esgdbinit: Command Files. (line 38)
* .gdbinit: Command Files. (line 11)
* .gnu_debuglink sections: Separate Debug Files.
(line 56)
* .o files, reading symbols from: Files. (line 152)
* .os68gdbinit: Command Files. (line 36)
* .vxgdbinit: Command Files. (line 34)
* /proc: SVR4 Process Information.
(line 6)
* ? packet: Packets. (line 19)
* @, referencing memory as an array: Arrays. (line 6)
* ^done: GDB/MI Result Records.
(line 9)
* ^error: GDB/MI Result Records.
(line 18)
* ^running: GDB/MI Result Records.
(line 14)
* _NSPrintForDebugger, and printing Objective-C objects: The Print Command with Objective-C.
(line 11)
* A packet: Packets. (line 28)
* abbreviation: Command Syntax. (line 13)
* abort (C-g): Miscellaneous Commands.
(line 10)
* accept-line (Newline or Return): Commands For History.
(line 6)
* acknowledgment, for GDB remote: Overview. (line 33)
* actions: Tracepoint Actions. (line 6)
* active targets: Active Targets. (line 6)
* Ada: Ada. (line 6)
* Ada mode, general: Ada Mode Intro. (line 6)
* Ada, deviations from: Additions to Ada. (line 6)
* Ada, omissions from: Omissions from Ada. (line 6)
* Ada, problems: Ada Glitches. (line 6)
* adbg_find_memory_in_frame: Tracing on Symmetrix.
(line 17)
* add-shared-symbol-file: Files. (line 186)
* add-symbol-file: Files. (line 133)
* address of a symbol: Symbols. (line 27)
* advance LOCATION: Continuing and Stepping.
(line 177)
* Alpha stack: MIPS. (line 6)
* AMD 29K register stack: A29K. (line 6)
* annotations: Annotations Overview.
(line 6)
* annotations for errors, warnings and interrupts: Errors. (line 6)
* annotations for invalidation messages: Invalidation. (line 6)
* annotations for prompts: Prompting. (line 6)
* annotations for running programs: Annotations for Running.
(line 6)
* annotations for source display: Source Annotations. (line 6)
* append: Dump/Restore Files. (line 35)
* append data to a file: Dump/Restore Files. (line 6)
* apropos: Help. (line 63)
* arguments (to your program): Arguments. (line 6)
* arrays: Arrays. (line 6)
* arrays in expressions: Expressions. (line 14)
* artificial array: Arrays. (line 6)
* ASCII character set: Character Sets. (line 65)
* assembly instructions: Machine Code. (line 36)
* assignment: Assignment. (line 6)
* async output in GDB/MI: GDB/MI Output Syntax.
(line 96)
* AT&T disassembly flavor: Machine Code. (line 62)
* attach: Attach. (line 6)
* attach to a program by name: Server. (line 70)
* automatic display: Auto Display. (line 6)
* automatic overlay debugging: Automatic Overlay Debugging.
(line 6)
* automatic thread selection: Threads. (line 145)
* auxiliary vector: Auxiliary Vector. (line 6)
* awatch: Set Watchpoints. (line 29)
* b (break): Set Breaks. (line 6)
* B packet: Packets. (line 52)
* b packet: Packets. (line 38)
* backtrace: Backtrace. (line 11)
* backtrace limit: Backtrace. (line 73)
* backtraces: Backtrace. (line 6)
* backward-char (C-b): Commands For Moving. (line 15)
* backward-delete-char (Rubout): Commands For Text. (line 11)
* backward-kill-line (C-x Rubout): Commands For Killing.
(line 9)
* backward-kill-word (M-): Commands For Killing.
(line 24)
* backward-word (M-b): Commands For Moving. (line 22)
* beginning-of-history (M-<): Commands For History.
(line 19)
* beginning-of-line (C-a): Commands For Moving. (line 6)
* bell-style: Readline Init File Syntax.
(line 31)
* break: Set Breaks. (line 6)
* break ... thread THREADNO: Thread Stops. (line 10)
* break in overloaded functions: Debugging C plus plus.
(line 9)
* break on fork/exec: Set Catchpoints. (line 19)
* break on load/unload of shared library: Set Catchpoints. (line 30)
* break, and Objective-C: Method Names in Commands.
(line 9)
* breakpoint: Annotations for Running.
(line 47)
* breakpoint address adjusted: Breakpoint related warnings.
(line 6)
* breakpoint commands: Break Commands. (line 6)
* breakpoint commands for GDB/MI: GDB/MI Breakpoint Table Commands.
(line 6)
* breakpoint conditions: Conditions. (line 6)
* breakpoint numbers: Breakpoints. (line 40)
* breakpoint on events: Breakpoints. (line 32)
* breakpoint on memory address: Breakpoints. (line 21)
* breakpoint on variable modification: Breakpoints. (line 21)
* breakpoint ranges: Breakpoints. (line 47)
* breakpoint subroutine, remote: Stub Contents. (line 31)
* breakpointing Ada elaboration code: Stopping Before Main Program.
(line 6)
* breakpoints: Breakpoints. (line 6)
* breakpoints and threads: Thread Stops. (line 10)
* breakpoints in overlays: Overlay Commands. (line 93)
* breakpoints-invalid: Invalidation. (line 13)
* bt (backtrace): Backtrace. (line 11)
* bug criteria: Bug Criteria. (line 6)
* bug reports: Bug Reporting. (line 6)
* bugs in GDB: GDB Bugs. (line 6)
* built-in simulator target: Target Commands. (line 67)
* c (continue): Continuing and Stepping.
(line 15)
* c (SingleKey TUI key): TUI Single Key Mode. (line 10)
* C and C++: C. (line 6)
* C and C++ checks: C Checks. (line 6)
* C and C++ constants: C Constants. (line 6)
* C and C++ defaults: C Defaults. (line 6)
* C and C++ operators: C Operators. (line 6)
* C packet: Packets. (line 64)
* c packet: Packets. (line 58)
* C++: C. (line 10)
* C++ compilers: C plus plus expressions.
(line 8)
* C++ exception handling: Debugging C plus plus.
(line 19)
* C++ overload debugging info: Debugging Output. (line 43)
* C++ scope resolution: Variables. (line 54)
* C++ symbol decoding style: Print Settings. (line 220)
* C++ symbol display: Debugging C plus plus.
(line 28)
* C-L: TUI Keys. (line 69)
* C-o (operate-and-get-next): Command Syntax. (line 40)
* C-x 1: TUI Keys. (line 22)
* C-x 2: TUI Keys. (line 29)
* C-x A: TUI Keys. (line 15)
* C-x a: TUI Keys. (line 14)
* C-x C-a: TUI Keys. (line 13)
* C-x o: TUI Keys. (line 37)
* C-x s: TUI Keys. (line 44)
* call: Calling. (line 6)
* call overloaded functions: C plus plus expressions.
(line 27)
* call stack: Stack. (line 9)
* call-last-kbd-macro (C-x e): Keyboard Macros. (line 13)
* calling functions: Calling. (line 6)
* calling make: Shell Commands. (line 19)
* capitalize-word (M-c): Commands For Text. (line 49)
* casts, in expressions: Expressions. (line 27)
* casts, to view memory: Expressions. (line 42)
* catch: Set Catchpoints. (line 10)
* catch exceptions, list active handlers: Frame Info. (line 60)
* catchpoints: Breakpoints. (line 32)
* catchpoints, setting: Set Catchpoints. (line 6)
* cd: Working Directory. (line 16)
* cdir: Source Path. (line 53)
* character sets: Character Sets. (line 6)
* character-search (C-]): Miscellaneous Commands.
(line 41)
* character-search-backward (M-C-]): Miscellaneous Commands.
(line 46)
* charset: Character Sets. (line 6)
* checks, range: Type Checking. (line 65)
* checks, type: Checks. (line 31)
* checksum, for GDB remote: Overview. (line 20)
* choosing target byte order: Byte Order. (line 6)
* clear: Delete Breaks. (line 21)
* clear, and Objective-C: Method Names in Commands.
(line 9)
* clear-screen (C-l): Commands For Moving. (line 26)
* clearing breakpoints, watchpoints, catchpoints: Delete Breaks.
(line 6)
* close, file-i/o system call: close. (line 6)
* closest symbol and offset for an address: Print Settings. (line 51)
* code address and its source line: Machine Code. (line 25)
* collect (tracepoints): Tracepoint Actions. (line 45)
* collected data discarded: Starting and Stopping Trace Experiment.
(line 6)
* colon, doubled as scope operator: M2 Scope. (line 6)
* colon-colon, context for variables/functions: Variables. (line 44)
* colon-colon, in Modula-2: M2 Scope. (line 6)
* command editing: Readline Bare Essentials.
(line 6)
* command files: Command Files. (line 6)
* command history: History. (line 6)
* command hooks: Hooks. (line 6)
* command interpreters: Interpreters. (line 6)
* command line editing: Editing. (line 6)
* commands <1>: Prompting. (line 27)
* commands: Break Commands. (line 11)
* commands for C++: Debugging C plus plus.
(line 6)
* commands to STDBUG (ST2000): ST2000. (line 30)
* comment: Command Syntax. (line 36)
* comment-begin: Readline Init File Syntax.
(line 38)
* common targets: Target Commands. (line 46)
* compatibility, GDB/MI and CLI: GDB/MI Compatibility with CLI.
(line 6)
* compilation directory: Source Path. (line 53)
* compiling, on Sparclet: Sparclet. (line 16)
* complete: Help. (line 77)
* complete (): Commands For Completion.
(line 6)
* completion: Completion. (line 6)
* completion of quoted strings: Completion. (line 57)
* completion-query-items: Readline Init File Syntax.
(line 48)
* condition: Conditions. (line 45)
* conditional breakpoints: Conditions. (line 6)
* configuring GDB: Installing GDB. (line 6)
* configuring GDB, and source tree subdirectories: Installing GDB.
(line 6)
* confirmation: Messages/Warnings. (line 50)
* connect (to STDBUG): ST2000. (line 34)
* console i/o as part of file-i/o: Console I/O. (line 6)
* console interpreter: Interpreters. (line 21)
* console output in GDB/MI: GDB/MI Output Syntax.
(line 104)
* constants, in file-i/o protocol: Constants. (line 6)
* continue: Continuing and Stepping.
(line 15)
* continuing: Continuing and Stepping.
(line 6)
* continuing threads: Thread Stops. (line 69)
* control C, and remote debugging: Bootstrapping. (line 25)
* controlling terminal: Input/Output. (line 23)
* convenience variables: Convenience Vars. (line 6)
* convenience variables for tracepoints: Tracepoint Variables.
(line 6)
* convert-meta: Readline Init File Syntax.
(line 57)
* copy-backward-word (): Commands For Killing.
(line 44)
* copy-forward-word (): Commands For Killing.
(line 49)
* copy-region-as-kill (): Commands For Killing.
(line 40)
* core dump file: Files. (line 6)
* core dump file target: Target Commands. (line 54)
* core-file: Files. (line 117)
* crash of debugger: Bug Criteria. (line 9)
* ctrl-c message, in file-i/o protocol: The Ctrl-C message. (line 6)
* current directory: Source Path. (line 53)
* current stack frame: Frames. (line 45)
* current thread: Threads. (line 38)
* cwd: Source Path. (line 53)
* Cygwin-specific commands: Cygwin Native. (line 6)
* d (delete): Delete Breaks. (line 36)
* d (SingleKey TUI key): TUI Single Key Mode. (line 13)
* D packet: Packets. (line 73)
* d packet: Packets. (line 70)
* data manipulation, in GDB/MI: GDB/MI Data Manipulation.
(line 6)
* debug formats and C++: C plus plus expressions.
(line 8)
* debug links: Separate Debug Files.
(line 56)
* debugger crash: Bug Criteria. (line 9)
* debugging C++ programs: C plus plus expressions.
(line 8)
* debugging information directory, global: Separate Debug Files.
(line 6)
* debugging information in separate files: Separate Debug Files.
(line 6)
* debugging multithreaded programs (on HP-UX): Threads. (line 82)
* debugging optimized code: Compilation. (line 33)
* debugging stub, example: remote stub. (line 6)
* debugging target: Targets. (line 6)
* define: Define. (line 24)
* defining macros interactively: Macros. (line 54)
* definition, showing a macro's: Macros. (line 50)
* delete: Delete Breaks. (line 36)
* delete breakpoints: Delete Breaks. (line 36)
* delete display: Auto Display. (line 46)
* delete mem: Memory Region Attributes.
(line 25)
* delete tracepoint: Create and Delete Tracepoints.
(line 34)
* delete-char (C-d): Commands For Text. (line 6)
* delete-char-or-list (): Commands For Completion.
(line 30)
* delete-horizontal-space (): Commands For Killing.
(line 32)
* deleting breakpoints, watchpoints, catchpoints: Delete Breaks.
(line 6)
* demangling C++ names: Print Settings. (line 201)
* derived type of an object, printing: Print Settings. (line 253)
* descriptor tables display: DJGPP Native. (line 24)
* detach: Attach. (line 46)
* detach (remote): Connecting. (line 64)
* device: Renesas Boards. (line 6)
* digit-argument (M-0, M-1, ... M--): Numeric Arguments. (line 6)
* dir: Source Path. (line 40)
* direct memory access (DMA) on MS-DOS: DJGPP Native. (line 75)
* directories for source files: Source Path. (line 6)
* directory: Source Path. (line 40)
* directory, compilation: Source Path. (line 53)
* directory, current: Source Path. (line 53)
* dis (disable): Disabling. (line 35)
* disable: Disabling. (line 35)
* disable display: Auto Display. (line 53)
* disable mem: Memory Region Attributes.
(line 28)
* disable tracepoint: Enable and Disable Tracepoints.
(line 6)
* disable-completion: Readline Init File Syntax.
(line 63)
* disassemble: Machine Code. (line 36)
* disconnect: Connecting. (line 71)
* display: Auto Display. (line 24)
* display disabled out of scope: Auto Display. (line 75)
* display of expressions: Auto Display. (line 6)
* DJGPP debugging: DJGPP Native. (line 6)
* dll-symbols: Cygwin Native. (line 26)
* DLLs with no debugging symbols: Non-debug DLL symbols.
(line 6)
* do (down): Selection. (line 40)
* do-uppercase-version (M-a, M-b, M-X, ...): Miscellaneous Commands.
(line 14)
* document: Define. (line 48)
* documentation: Formatting Documentation.
(line 22)
* Down: TUI Keys. (line 60)
* down: Selection. (line 40)
* down-silently: Selection. (line 64)
* downcase-word (M-l): Commands For Text. (line 45)
* download to H8/300 or H8/500: H8/300. (line 19)
* download to Renesas SH: H8/300. (line 19)
* download to Sparclet: Sparclet Download. (line 6)
* download to VxWorks: VxWorks Download. (line 6)
* dump: Dump/Restore Files. (line 13)
* dump all data collected at tracepoint: tdump. (line 6)
* dump data to a file: Dump/Restore Files. (line 6)
* dump-functions (): Miscellaneous Commands.
(line 61)
* dump-macros (): Miscellaneous Commands.
(line 73)
* dump-variables (): Miscellaneous Commands.
(line 67)
* dump/restore files: Dump/Restore Files. (line 6)
* dynamic linking: Files. (line 133)
* e (edit): Edit. (line 6)
* EBCDIC character set: Character Sets. (line 74)
* echo: Output. (line 12)
* edit: Edit. (line 6)
* editing: Editing. (line 15)
* editing command lines: Readline Bare Essentials.
(line 6)
* editing source files: Edit. (line 6)
* editing-mode: Readline Init File Syntax.
(line 68)
* eight-bit characters in strings: Print Settings. (line 150)
* else: Define. (line 33)
* Emacs: Emacs. (line 6)
* enable: Disabling. (line 42)
* enable display: Auto Display. (line 58)
* enable mem: Memory Region Attributes.
(line 32)
* enable tracepoint: Enable and Disable Tracepoints.
(line 12)
* enable-keypad: Readline Init File Syntax.
(line 74)
* enable/disable a breakpoint: Disabling. (line 6)
* end: Break Commands. (line 11)
* end-kbd-macro (C-x )): Keyboard Macros. (line 9)
* end-of-history (M->): Commands For History.
(line 22)
* end-of-line (C-e): Commands For Moving. (line 9)
* entering numbers: Numbers. (line 6)
* environment (of your program): Environment. (line 6)
* errno values, in file-i/o protocol: Errno values. (line 6)
* error: Errors. (line 10)
* error on valid input: Bug Criteria. (line 12)
* error-begin: Errors. (line 22)
* event debugging info: Debugging Output. (line 14)
* event designators: Event Designators. (line 6)
* event handling: Set Catchpoints. (line 6)
* examining data: Data. (line 6)
* examining memory: Memory. (line 9)
* exception handlers: Set Catchpoints. (line 6)
* exception handlers, how to list: Frame Info. (line 60)
* exceptionHandler: Bootstrapping. (line 38)
* exchange-point-and-mark (C-x C-x): Miscellaneous Commands.
(line 36)
* exec-file: Files. (line 37)
* executable file: Files. (line 15)
* executable file target: Target Commands. (line 50)
* exited: Annotations for Running.
(line 18)
* exiting GDB: Quitting GDB. (line 6)
* expand macro once: Macros. (line 41)
* expand-tilde: Readline Init File Syntax.
(line 79)
* expanding preprocessor macros: Macros. (line 32)
* expression debugging info: Debugging Output. (line 21)
* expressions: Expressions. (line 6)
* expressions in Ada: Ada. (line 11)
* expressions in C or C++: C. (line 6)
* expressions in C++: C plus plus expressions.
(line 6)
* expressions in Modula-2: Modula-2. (line 12)
* f (frame): Selection. (line 11)
* f (SingleKey TUI key): TUI Single Key Mode. (line 16)
* F packet: Packets. (line 90)
* F reply packet: The F reply packet. (line 6)
* F request packet: The F request packet.
(line 6)
* fatal signal: Bug Criteria. (line 9)
* fatal signals: Signals. (line 15)
* FDL, GNU Free Documentation License: GNU Free Documentation License.
(line 6)
* fg (resume foreground execution): Continuing and Stepping.
(line 15)
* file: Files. (line 15)
* file-i/o examples: File-I/O Examples. (line 6)
* file-i/o overview: File-I/O Overview. (line 6)
* File-I/O remote protocol extension: File-I/O remote protocol extension.
(line 6)
* file-i/o reply packet: The F reply packet. (line 6)
* file-i/o request packet: The F request packet.
(line 6)
* find trace snapshot: tfind. (line 6)
* finish: Continuing and Stepping.
(line 106)
* flinching: Messages/Warnings. (line 50)
* float promotion: ABI. (line 29)
* floating point: Floating Point Hardware.
(line 6)
* floating point registers: Registers. (line 15)
* floating point, MIPS remote: MIPS Embedded. (line 68)
* flush_i_cache: Bootstrapping. (line 60)
* focus: TUI Commands. (line 34)
* focus of debugging: Threads. (line 38)
* foo: Symbol Errors. (line 50)
* fork, debugging programs which call: Processes. (line 6)
* format options: Print Settings. (line 6)
* formatted output: Output Formats. (line 6)
* Fortran: Summary. (line 35)
* forward-backward-delete-char (): Commands For Text. (line 15)
* forward-char (C-f): Commands For Moving. (line 12)
* forward-search: Search. (line 9)
* forward-search-history (C-s): Commands For History.
(line 30)
* forward-word (M-f): Commands For Moving. (line 18)
* frame debugging info: Debugging Output. (line 29)
* frame number: Frames. (line 28)
* frame pointer: Frames. (line 21)
* frame, command: Frames. (line 45)
* frame, definition: Frames. (line 6)
* frame, selecting: Selection. (line 11)
* frameless execution: Frames. (line 34)
* frames-invalid: Invalidation. (line 9)
* free memory information (MS-DOS): DJGPP Native. (line 19)
* fstat, file-i/o system call: stat/fstat. (line 6)
* Fujitsu: remote stub. (line 69)
* full symbol tables, listing GDB's internal: Symbols. (line 240)
* function entry/exit, wrong values of variables: Variables. (line 58)
* functions without line info, and stepping: Continuing and Stepping.
(line 93)
* G packet: Packets. (line 111)
* g packet: Packets. (line 95)
* g++, GNU C++ compiler: C. (line 10)
* garbled pointers: DJGPP Native. (line 42)
* GCC and C++: C plus plus expressions.
(line 8)
* GDB bugs, reporting: Bug Reporting. (line 6)
* GDB reference card: Formatting Documentation.
(line 6)
* gdb.ini: Command Files. (line 11)
* GDB/MI, breakpoint commands: GDB/MI Breakpoint Table Commands.
(line 6)
* GDB/MI, compatibility with CLI: GDB/MI Compatibility with CLI.
(line 6)
* GDB/MI, data manipulation: GDB/MI Data Manipulation.
(line 6)
* GDB/MI, input syntax: GDB/MI Input Syntax. (line 6)
* GDB/MI, its purpose: GDB/MI. (line 9)
* GDB/MI, out-of-band records: GDB/MI Out-of-band Records.
(line 6)
* GDB/MI, output syntax: GDB/MI Output Syntax.
(line 6)
* GDB/MI, result records: GDB/MI Result Records.
(line 6)
* GDB/MI, simple examples: GDB/MI Simple Examples.
(line 6)
* GDB/MI, stream records: GDB/MI Stream Records.
(line 6)
* gdbarch debugging info: Debugging Output. (line 6)
* GDBHISTFILE, environment variable: History. (line 16)
* gdbserve.nlm: NetWare. (line 6)
* gdbserver: Server. (line 6)
* GDT: DJGPP Native. (line 24)
* getDebugChar: Bootstrapping. (line 14)
* gettimeofday, file-i/o system call: gettimeofday. (line 6)
* global debugging information directory: Separate Debug Files.
(line 6)
* GNU C++: C. (line 10)
* GNU Emacs: Emacs. (line 6)
* gnu_debuglink_crc32: Separate Debug Files.
(line 94)
* h (help): Help. (line 9)
* H packet: Packets. (line 125)
* H8/300 or H8/500 download: H8/300. (line 19)
* handle: Signals. (line 41)
* handle_exception: Stub Contents. (line 15)
* handling signals: Signals. (line 27)
* hardware watchpoints: Set Watchpoints. (line 6)
* hbreak: Set Breaks. (line 81)
* help: Help. (line 6)
* help target: Target Commands. (line 19)
* help user-defined: Define. (line 60)
* heuristic-fence-post (Alpha, MIPS): MIPS. (line 14)
* history events: Event Designators. (line 7)
* history expansion: History Interaction. (line 6)
* history expansion, turn on/off: History. (line 43)
* history file: History. (line 16)
* history number: Value History. (line 13)
* history save: History. (line 26)
* history size: History. (line 35)
* history substitution: History. (line 16)
* history-preserve-point: Readline Init File Syntax.
(line 82)
* history-search-backward (): Commands For History.
(line 50)
* history-search-forward (): Commands For History.
(line 45)
* hook: Hooks. (line 6)
* hookpost: Hooks. (line 11)
* hooks, for commands: Hooks. (line 6)
* hooks, post-command: Hooks. (line 11)
* hooks, pre-command: Hooks. (line 6)
* horizontal-scroll-mode: Readline Init File Syntax.
(line 87)
* host character set: Character Sets. (line 6)
* htrace: OpenRISC 1000. (line 69)
* hwatch: OpenRISC 1000. (line 59)
* i (info): Help. (line 100)
* I packet: Packets. (line 144)
* i packet: Packets. (line 139)
* i/o: Input/Output. (line 6)
* i386: remote stub. (line 57)
* i386-stub.c: remote stub. (line 57)
* IBM1047 character set: Character Sets. (line 74)
* IDT: DJGPP Native. (line 24)
* if: Define. (line 33)
* ignore: Conditions. (line 77)
* ignore count (of breakpoint): Conditions. (line 66)
* INCLUDE_RDB: VxWorks. (line 33)
* info: Help. (line 100)
* info address: Symbols. (line 27)
* info all-registers: Registers. (line 15)
* info args: Frame Info. (line 51)
* info auxv: Auxiliary Vector. (line 15)
* info breakpoints: Set Breaks. (line 134)
* info catch: Frame Info. (line 60)
* info cisco: KOD. (line 26)
* info classes: Symbols. (line 167)
* info display: Auto Display. (line 67)
* info dll: Cygwin Native. (line 23)
* info dos: DJGPP Native. (line 15)
* info extensions: Show. (line 29)
* info f (info frame): Frame Info. (line 17)
* info files: Files. (line 201)
* info float: Floating Point Hardware.
(line 9)
* info frame: Frame Info. (line 17)
* info frame, show the source language: Show. (line 15)
* info functions: Symbols. (line 146)
* info line: Machine Code. (line 13)
* info line, and Objective-C: Method Names in Commands.
(line 9)
* info locals: Frame Info. (line 55)
* info macro: Macros. (line 50)
* info mem: Memory Region Attributes.
(line 35)
* info or1k spr: OpenRISC 1000. (line 20)
* info proc: SVR4 Process Information.
(line 15)
* info proc mappings: SVR4 Process Information.
(line 18)
* info program: Stopping. (line 18)
* info registers: Registers. (line 11)
* info scope: Symbols. (line 101)
* info selectors: Symbols. (line 173)
* info set: Help. (line 120)
* info share: Files. (line 321)
* info sharedlibrary: Files. (line 321)
* info signals: Signals. (line 33)
* info source: Symbols. (line 121)
* info source, show the source language: Show. (line 21)
* info sources: Symbols. (line 140)
* info stack: Backtrace. (line 27)
* info symbol: Symbols. (line 37)
* info target: Files. (line 201)
* info terminal: Input/Output. (line 12)
* info threads: Threads. (line 59)
* info threads (HP-UX): Threads. (line 96)
* info tracepoints: Listing Tracepoints. (line 6)
* info types: Symbols. (line 87)
* info variables: Symbols. (line 158)
* info vector: Vector Unit. (line 9)
* info w32: Cygwin Native. (line 12)
* info watchpoints: Set Watchpoints. (line 33)
* info win: TUI Commands. (line 12)
* information about tracepoints: Listing Tracepoints. (line 6)
* inheritance: Debugging C plus plus.
(line 24)
* init file: Command Files. (line 11)
* init file name: Command Files. (line 28)
* initial frame: Frames. (line 12)
* initialization file, readline: Readline Init File. (line 6)
* innermost frame: Frames. (line 12)
* input syntax for GDB/MI: GDB/MI Input Syntax. (line 6)
* input-meta: Readline Init File Syntax.
(line 94)
* insert-comment (M-#): Miscellaneous Commands.
(line 51)
* insert-completions (M-*): Commands For Completion.
(line 14)
* inspect: Data. (line 6)
* installation: Installing GDB. (line 6)
* instructions, assembly: Machine Code. (line 36)
* integral datatypes, in file-i/o protocol: Integral datatypes.
(line 6)
* Intel: remote stub. (line 57)
* Intel disassembly flavor: Machine Code. (line 62)
* interaction, readline: Readline Interaction.
(line 6)
* internal commands: Maintenance Commands.
(line 6)
* internal GDB breakpoints: Set Breaks. (line 237)
* interpreter-exec: Interpreters. (line 43)
* interrupt: Quitting GDB. (line 13)
* interrupting remote programs: Connecting. (line 51)
* interrupting remote targets: Bootstrapping. (line 25)
* invalid input: Bug Criteria. (line 16)
* invoke another interpreter: Interpreters. (line 37)
* isatty call, file-i/o protocol: The isatty call. (line 6)
* isatty, file-i/o system call: isatty. (line 6)
* isearch-terminators: Readline Init File Syntax.
(line 101)
* ISO 8859-1 character set: Character Sets. (line 68)
* ISO Latin 1 character set: Character Sets. (line 68)
* jump: Jumping. (line 10)
* jump, and Objective-C: Method Names in Commands.
(line 9)
* k packet: Packets. (line 153)
* kernel crash dump: BSD libkvm Interface.
(line 6)
* kernel memory image: BSD libkvm Interface.
(line 6)
* kernel object display: KOD. (line 6)
* keymap: Readline Init File Syntax.
(line 108)
* kill: Kill Process. (line 6)
* kill ring: Readline Killing Commands.
(line 19)
* kill-line (C-k): Commands For Killing.
(line 6)
* kill-region (): Commands For Killing.
(line 36)
* kill-whole-line (): Commands For Killing.
(line 15)
* kill-word (M-d): Commands For Killing.
(line 19)
* killing text: Readline Killing Commands.
(line 6)
* KOD: KOD. (line 6)
* kvm: BSD libkvm Interface.
(line 24)
* l (list): List. (line 6)
* languages: Languages. (line 6)
* last tracepoint number: Create and Delete Tracepoints.
(line 31)
* latest breakpoint: Set Breaks. (line 6)
* layout: TUI Commands. (line 15)
* LDT: DJGPP Native. (line 24)
* leaving GDB: Quitting GDB. (line 6)
* Left: TUI Keys. (line 63)
* libkvm: BSD libkvm Interface.
(line 6)
* limits, in file-i/o protocol: Limits. (line 6)
* linespec: List. (line 45)
* list: List. (line 6)
* list of supported file-i/o calls: List of supported calls.
(line 6)
* list output in GDB/MI: GDB/MI Output Syntax.
(line 115)
* list, and Objective-C: Method Names in Commands.
(line 9)
* listing GDB's internal symbol tables: Symbols. (line 240)
* listing machine instructions: Machine Code. (line 36)
* listing mapped overlays: Overlay Commands. (line 60)
* load address, overlay's: How Overlays Work. (line 6)
* load FILENAME: Target Commands. (line 91)
* local variables: Symbols. (line 101)
* locate address: Output Formats. (line 35)
* log output in GDB/MI: GDB/MI Output Syntax.
(line 111)
* logging GDB output: Logging output. (line 6)
* lseek flags, in file-i/o protocol: Lseek flags. (line 6)
* lseek, file-i/o system call: lseek. (line 6)
* M packet: Packets. (line 184)
* m packet: Packets. (line 167)
* m680x0: remote stub. (line 60)
* m68k-stub.c: remote stub. (line 60)
* machine instructions: Machine Code. (line 36)
* macro define: Macros. (line 54)
* macro definition, showing: Macros. (line 50)
* macro expand: Macros. (line 32)
* macro expansion, showing the results of preprocessor: Macros.
(line 32)
* macro undef: Macros. (line 69)
* macros, example of debugging with: Macros. (line 77)
* macros, user-defined: Macros. (line 54)
* maint info breakpoints: Maintenance Commands.
(line 10)
* maint info psymtabs: Symbols. (line 240)
* maint info sections: Files. (line 210)
* maint info symtabs: Symbols. (line 240)
* maint internal-error: Maintenance Commands.
(line 41)
* maint internal-warning: Maintenance Commands.
(line 41)
* maint print cooked-registers: Maintenance Commands.
(line 78)
* maint print dummy-frames: Maintenance Commands.
(line 60)
* maint print psymbols: Symbols. (line 221)
* maint print raw-registers: Maintenance Commands.
(line 78)
* maint print reggroups: Maintenance Commands.
(line 92)
* maint print register-groups: Maintenance Commands.
(line 78)
* maint print registers: Maintenance Commands.
(line 78)
* maint print symbols: Symbols. (line 221)
* maint set dwarf2 max-cache-age: Maintenance Commands.
(line 123)
* maint set profile: Maintenance Commands.
(line 107)
* maint show dwarf2 max-cache-age: Maintenance Commands.
(line 123)
* maint show profile: Maintenance Commands.
(line 107)
* maintenance commands: Maintenance Commands.
(line 6)
* make: Shell Commands. (line 19)
* manual overlay debugging: Overlay Commands. (line 23)
* map an overlay: Overlay Commands. (line 30)
* mapped: Files. (line 89)
* mapped address: How Overlays Work. (line 6)
* mapped overlays: How Overlays Work. (line 6)
* mark-modified-lines: Readline Init File Syntax.
(line 121)
* mark-symlinked-directories: Readline Init File Syntax.
(line 126)
* match-hidden-files: Readline Init File Syntax.
(line 131)
* maximum value for offset of closest symbol: Print Settings. (line 70)
* mem: Memory Region Attributes.
(line 19)
* member functions: C plus plus expressions.
(line 18)
* memory models, H8/500: H8/500. (line 6)
* memory region attributes: Memory Region Attributes.
(line 6)
* memory tracing: Breakpoints. (line 21)
* memory transfer, in file-i/o protocol: Memory transfer. (line 6)
* memory, viewing as typed object: Expressions. (line 42)
* memory-mapped symbol file: Files. (line 89)
* memset: Bootstrapping. (line 70)
* menu-complete (): Commands For Completion.
(line 18)
* meta-flag: Readline Init File Syntax.
(line 94)
* mi interpreter: Interpreters. (line 26)
* mi1 interpreter: Interpreters. (line 34)
* mi2 interpreter: Interpreters. (line 31)
* minimal language: Unsupported languages.
(line 6)
* Minimal symbols and DLLs: Non-debug DLL symbols.
(line 6)
* MIPS boards: MIPS Embedded. (line 6)
* MIPS remote floating point: MIPS Embedded. (line 68)
* MIPS remotedebug protocol: MIPS Embedded. (line 89)
* MIPS stack: MIPS. (line 6)
* mode_t values, in file-i/o protocol: mode_t values. (line 6)
* Modula-2: Summary. (line 27)
* Modula-2 built-ins: Built-In Func/Proc. (line 6)
* Modula-2 checks: M2 Checks. (line 6)
* Modula-2 constants: Built-In Func/Proc. (line 109)
* Modula-2 defaults: M2 Defaults. (line 6)
* Modula-2 operators: M2 Operators. (line 6)
* Modula-2, deviations from: Deviations. (line 6)
* Modula-2, GDB support: Modula-2. (line 6)
* Motorola 680x0: remote stub. (line 60)
* MS Windows debugging: Cygwin Native. (line 6)
* MS-DOS system info: DJGPP Native. (line 19)
* MS-DOS-specific commands: DJGPP Native. (line 6)
* multiple processes: Processes. (line 6)
* multiple targets: Active Targets. (line 6)
* multiple threads: Threads. (line 6)
* n (next): Continuing and Stepping.
(line 78)
* n (SingleKey TUI key): TUI Single Key Mode. (line 19)
* names of symbols: Symbols. (line 14)
* namespace in C++: C plus plus expressions.
(line 22)
* native Cygwin debugging: Cygwin Native. (line 6)
* native DJGPP debugging: DJGPP Native. (line 6)
* negative breakpoint numbers: Set Breaks. (line 237)
* NetROM ROM emulator target: Target Commands. (line 82)
* New SYSTAG message: Threads. (line 44)
* New SYSTAG message, on HP-UX: Threads. (line 86)
* next: Continuing and Stepping.
(line 78)
* next-history (C-n): Commands For History.
(line 16)
* nexti: Continuing and Stepping.
(line 199)
* ni (nexti): Continuing and Stepping.
(line 199)
* non-incremental-forward-search-history (M-n): Commands For History.
(line 40)
* non-incremental-reverse-search-history (M-p): Commands For History.
(line 35)
* non-member C++ functions, set breakpoint in: Set Breaks. (line 125)
* notation, readline: Readline Bare Essentials.
(line 6)
* notational conventions, for GDB/MI: GDB/MI. (line 22)
* notify output in GDB/MI: GDB/MI Output Syntax.
(line 100)
* NULL elements in arrays: Print Settings. (line 121)
* number of array elements to print: Print Settings. (line 109)
* number representation: Numbers. (line 6)
* numbers for breakpoints: Breakpoints. (line 40)
* object files, relocatable, reading symbols from: Files. (line 152)
* Objective-C: Objective-C. (line 6)
* observer debugging info: Debugging Output. (line 36)
* octal escapes in strings: Print Settings. (line 150)
* online documentation: Help. (line 6)
* open flags, in file-i/o protocol: Open flags. (line 6)
* open, file-i/o system call: open. (line 6)
* OpenRISC 1000: OpenRISC 1000. (line 6)
* OpenRISC 1000 htrace: OpenRISC 1000. (line 58)
* operations allowed on pending breakpoints: Set Breaks. (line 224)
* optimized code, debugging: Compilation. (line 33)
* optimized code, wrong values of variables: Variables. (line 58)
* optional debugging messages: Debugging Output. (line 6)
* or1k boards: OpenRISC 1000. (line 6)
* or1ksim: OpenRISC 1000. (line 16)
* OS ABI: ABI. (line 11)
* out-of-band records in GDB/MI: GDB/MI Out-of-band Records.
(line 6)
* outermost frame: Frames. (line 12)
* output: Output. (line 35)
* output formats: Output Formats. (line 6)
* output syntax of GDB/MI: GDB/MI Output Syntax.
(line 6)
* output-meta: Readline Init File Syntax.
(line 138)
* overlay: Overlay Commands. (line 17)
* overlay area: How Overlays Work. (line 6)
* overlay example program: Overlay Sample Program.
(line 6)
* overlays: Overlays. (line 6)
* overlays, setting breakpoints in: Overlay Commands. (line 93)
* overload-choice: Prompting. (line 32)
* overloaded functions, calling: C plus plus expressions.
(line 27)
* overloaded functions, overload resolution: Debugging C plus plus.
(line 47)
* overloading: Breakpoint Menus. (line 6)
* overloading in C++: Debugging C plus plus.
(line 14)
* overwrite-mode (): Commands For Text. (line 53)
* P packet: Packets. (line 221)
* p packet: Packets. (line 207)
* packets, reporting on stdout: Debugging Output. (line 49)
* page tables display (MS-DOS): DJGPP Native. (line 56)
* page-completions: Readline Init File Syntax.
(line 143)
* partial symbol dump: Symbols. (line 221)
* partial symbol tables, listing GDB's internal: Symbols. (line 240)
* Pascal: Summary. (line 30)
* passcount: Tracepoint Passcounts.
(line 6)
* patching binaries: Patching. (line 6)
* path: Environment. (line 14)
* pauses in output: Screen Size. (line 6)
* pending breakpoints: Set Breaks. (line 191)
* PgDn: TUI Keys. (line 54)
* PgUp: TUI Keys. (line 51)
* physical address from linear address: DJGPP Native. (line 81)
* pipes: Starting. (line 54)
* po (print-object): The Print Command with Objective-C.
(line 6)
* pointer values, in file-i/o protocol: Pointer values. (line 6)
* pointer, finding referent: Print Settings. (line 79)
* possible-completions (M-?): Commands For Completion.
(line 11)
* post-commands: Prompting. (line 27)
* post-overload-choice: Prompting. (line 32)
* post-prompt: Prompting. (line 24)
* post-prompt-for-continue: Prompting. (line 40)
* post-query: Prompting. (line 36)
* pre-commands: Prompting. (line 27)
* pre-overload-choice: Prompting. (line 32)
* pre-prompt: Prompting. (line 24)
* pre-prompt-for-continue: Prompting. (line 40)
* pre-query: Prompting. (line 36)
* prefix-meta (): Miscellaneous Commands.
(line 18)
* premature return from system calls: Thread Stops. (line 36)
* preprocessor macro expansion, showing the results of: Macros.
(line 32)
* pretty print arrays: Print Settings. (line 98)
* pretty print C++ virtual function tables: Print Settings. (line 277)
* previous-history (C-p): Commands For History.
(line 12)
* print: Data. (line 6)
* print an Objective-C object description: The Print Command with Objective-C.
(line 11)
* print settings: Print Settings. (line 6)
* print-object: The Print Command with Objective-C.
(line 6)
* print/don't print memory addresses: Print Settings. (line 13)
* printf: Output. (line 46)
* printing data: Data. (line 6)
* process image: SVR4 Process Information.
(line 6)
* processes, multiple: Processes. (line 6)
* profiling GDB: Maintenance Commands.
(line 107)
* prompt <1>: Prompting. (line 24)
* prompt: Prompt. (line 6)
* prompt-for-continue: Prompting. (line 40)
* protocol basics, file-i/o: Protocol basics. (line 6)
* protocol specific representation of datatypes, in file-i/o protocol: Protocol specific representation of datatypes.
(line 6)
* protocol, GDB remote serial: Overview. (line 14)
* ptype: Symbols. (line 58)
* putDebugChar: Bootstrapping. (line 20)
* pwd: Working Directory. (line 19)
* q (quit): Quitting GDB. (line 6)
* q (SingleKey TUI key): TUI Single Key Mode. (line 22)
* Q packet: Packets. (line 249)
* q packet: Packets. (line 232)
* query: Prompting. (line 36)
* quit: Errors. (line 6)
* quit [EXPRESSION]: Quitting GDB. (line 6)
* quoted-insert (C-q or C-v): Commands For Text. (line 20)
* quotes in commands: Completion. (line 57)
* quoting Ada internal identifiers: Additions to Ada. (line 76)
* quoting names: Symbols. (line 14)
* r (run): Starting. (line 6)
* r (SingleKey TUI key): TUI Single Key Mode. (line 25)
* R packet: Packets. (line 258)
* r packet: Packets. (line 255)
* raise exceptions: Set Catchpoints. (line 64)
* range checking: Type Checking. (line 65)
* ranges of breakpoints: Breakpoints. (line 47)
* rbreak: Set Breaks. (line 109)
* re-read-init-file (C-x C-r): Miscellaneous Commands.
(line 6)
* read, file-i/o system call: read. (line 6)
* reading symbols from relocatable object files: Files. (line 152)
* reading symbols immediately: Files. (line 89)
* readline: Editing. (line 6)
* readnow: Files. (line 89)
* recent tracepoint number: Create and Delete Tracepoints.
(line 31)
* recording a session script: Bug Reporting. (line 104)
* redirection: Input/Output. (line 6)
* redraw-current-line (): Commands For Moving. (line 30)
* reference card: Formatting Documentation.
(line 6)
* reference declarations: C plus plus expressions.
(line 51)
* refresh: TUI Commands. (line 39)
* register stack, AMD29K: A29K. (line 6)
* registers: Registers. (line 6)
* regular expression: Set Breaks. (line 109)
* reloading symbols: Symbols. (line 179)
* reloading the overlay table: Overlay Commands. (line 52)
* relocatable object files, reading symbols from: Files. (line 152)
* remote connection without stubs: Server. (line 6)
* remote debugging: Remote. (line 6)
* remote programs, interrupting: Connecting. (line 51)
* remote protocol, field separator: Overview. (line 47)
* remote serial debugging summary: Debug Session. (line 6)
* remote serial debugging, overview: remote stub. (line 14)
* remote serial protocol: Overview. (line 14)
* remote serial stub: Stub Contents. (line 6)
* remote serial stub list: remote stub. (line 54)
* remote serial stub, initialization: Stub Contents. (line 10)
* remote serial stub, main routine: Stub Contents. (line 15)
* remote stub, example: remote stub. (line 6)
* remote stub, support routines: Bootstrapping. (line 6)
* remote target: Target Commands. (line 58)
* remotedebug, MIPS protocol: MIPS Embedded. (line 89)
* remotetimeout: Sparclet. (line 12)
* remove actions from a tracepoint: Tracepoint Actions. (line 17)
* rename, file-i/o system call: rename. (line 6)
* Renesas: remote stub. (line 63)
* Renesas SH download: H8/300. (line 19)
* repeating command sequences: Command Syntax. (line 40)
* repeating commands: Command Syntax. (line 21)
* reporting bugs in GDB: GDB Bugs. (line 6)
* reprint the last value: Data. (line 21)
* response time, MIPS debugging: MIPS. (line 10)
* restore: Dump/Restore Files. (line 41)
* restore data from a file: Dump/Restore Files. (line 6)
* result records in GDB/MI: GDB/MI Result Records.
(line 6)
* resuming execution: Continuing and Stepping.
(line 6)
* RET (repeat last command): Command Syntax. (line 21)
* retransmit-timeout, MIPS protocol: MIPS Embedded. (line 99)
* return: Returning. (line 6)
* returning from a function: Returning. (line 6)
* reverse-search: Search. (line 6)
* reverse-search-history (C-r): Commands For History.
(line 26)
* revert-line (M-r): Miscellaneous Commands.
(line 25)
* Right: TUI Keys. (line 66)
* run: Starting. (line 6)
* run to main procedure: Starting. (line 71)
* running: Starting. (line 6)
* running and debugging Sparclet programs: Sparclet Execution.
(line 6)
* running VxWorks tasks: VxWorks Attach. (line 6)
* running, on Sparclet: Sparclet. (line 28)
* rwatch: Set Watchpoints. (line 25)
* s (SingleKey TUI key): TUI Single Key Mode. (line 28)
* s (step): Continuing and Stepping.
(line 46)
* S packet: Packets. (line 272)
* s packet: Packets. (line 266)
* save tracepoints for future sessions: save-tracepoints. (line 6)
* save-tracepoints: save-tracepoints. (line 6)
* saving symbol table: Files. (line 89)
* scope: M2 Scope. (line 6)
* search: Search. (line 9)
* searching source files: Search. (line 6)
* section: Files. (line 193)
* segment descriptor tables: DJGPP Native. (line 24)
* select trace snapshot: tfind. (line 6)
* select-frame: Frames. (line 51)
* selected frame: Stack. (line 19)
* selecting frame silently: Frames. (line 51)
* self-insert (a, b, A, 1, !, ...): Commands For Text. (line 27)
* separate debugging information files: Separate Debug Files.
(line 6)
* sequence-id, for GDB remote: Overview. (line 29)
* serial connections, debugging: Debugging Output. (line 49)
* serial device, Renesas micros: Renesas Boards. (line 6)
* serial line speed, Renesas micros: Renesas Boards. (line 11)
* serial line, target remote: Connecting. (line 11)
* serial protocol, GDB remote: Overview. (line 14)
* server prefix for annotations: Server Prefix. (line 6)
* set: Help. (line 108)
* set args: Arguments. (line 21)
* set auto-solib-add: Files. (line 307)
* set auto-solib-limit: Files. (line 347)
* set backtrace: Backtrace. (line 62)
* set breakpoint pending: Set Breaks. (line 207)
* set breakpoints on all functions: Set Breaks. (line 129)
* set charset: Character Sets. (line 47)
* set check range: Range Checking. (line 33)
* set check type: Type Checking. (line 42)
* set coerce-float-to-double: ABI. (line 29)
* set complaints: Messages/Warnings. (line 29)
* set confirm: Messages/Warnings. (line 50)
* set cp-abi: ABI. (line 50)
* set debug: Debugging Output. (line 6)
* set debug-file-directory: Separate Debug Files.
(line 47)
* set debugevents: Cygwin Native. (line 47)
* set debugexceptions: Cygwin Native. (line 55)
* set debugexec: Cygwin Native. (line 51)
* set debugmemory: Cygwin Native. (line 59)
* set disassembly-flavor: Machine Code. (line 62)
* set editing: Editing. (line 15)
* set endian: Byte Order. (line 13)
* set environment: Environment. (line 39)
* set extension-language: Show. (line 29)
* set follow-fork-mode: Processes. (line 35)
* set gnutarget: Target Commands. (line 28)
* set height: Screen Size. (line 21)
* set history: History. (line 26)
* set history expansion: History. (line 55)
* set history filename: History. (line 16)
* set host-charset: Character Sets. (line 34)
* set input-radix: Numbers. (line 14)
* set language: Manually. (line 9)
* set listsize: List. (line 32)
* set logging: Logging output. (line 9)
* set machine: Renesas Special. (line 8)
* set max-user-call-depth: Define. (line 70)
* set memory MOD: H8/500. (line 6)
* set mipsfpu: MIPS Embedded. (line 68)
* set new-console: Cygwin Native. (line 30)
* set new-group: Cygwin Native. (line 39)
* set opaque-type-resolution: Symbols. (line 203)
* set os: KOD. (line 12)
* set osabi: ABI. (line 11)
* set output-radix: Numbers. (line 27)
* set overload-resolution: Debugging C plus plus.
(line 47)
* set print: Print Settings. (line 11)
* set processor ARGS: MIPS Embedded. (line 57)
* set prompt: Prompt. (line 16)
* set remote hardware-breakpoint-limit: Remote configuration.
(line 9)
* set remote hardware-watchpoint-limit: Remote configuration.
(line 9)
* set remote system-call-allowed 0: The system call. (line 22)
* set remote system-call-allowed 1: The system call. (line 18)
* set remotedebug, MIPS protocol: MIPS Embedded. (line 89)
* set retransmit-timeout: MIPS Embedded. (line 99)
* set rstack_high_address: A29K. (line 6)
* set shell: Cygwin Native. (line 63)
* set solib-absolute-prefix: Files. (line 370)
* set solib-search-path: Files. (line 384)
* set step-mode: Continuing and Stepping.
(line 92)
* set symbol-reloading: Symbols. (line 186)
* set target-charset: Character Sets. (line 28)
* set timeout: MIPS Embedded. (line 99)
* set tracepoint: Create and Delete Tracepoints.
(line 6)
* set trust-readonly-sections: Files. (line 268)
* set tui active-border-mode: TUI Configuration. (line 25)
* set tui border-kind: TUI Configuration. (line 10)
* set tui border-mode: TUI Configuration. (line 30)
* set variable: Assignment. (line 16)
* set verbose: Messages/Warnings. (line 15)
* set width: Screen Size. (line 21)
* set write: Patching. (line 15)
* set-mark (C-@): Miscellaneous Commands.
(line 32)
* set_debug_traps: Stub Contents. (line 10)
* setting variables: Assignment. (line 6)
* setting watchpoints: Set Watchpoints. (line 6)
* SH: remote stub. (line 63)
* sh-stub.c: remote stub. (line 63)
* share: Files. (line 325)
* shared libraries: Files. (line 288)
* sharedlibrary: Files. (line 325)
* shell: Shell Commands. (line 10)
* shell escape: Shell Commands. (line 10)
* show: Help. (line 113)
* show args: Arguments. (line 28)
* show auto-solib-add: Files. (line 315)
* show auto-solib-limit: Files. (line 356)
* show backtrace: Backtrace. (line 69)
* show breakpoint pending: Set Breaks. (line 207)
* show charset: Character Sets. (line 53)
* show check range: Range Checking. (line 33)
* show check type: Type Checking. (line 42)
* show complaints: Messages/Warnings. (line 35)
* show confirm: Messages/Warnings. (line 56)
* show convenience: Convenience Vars. (line 37)
* show copying: Help. (line 137)
* show cp-abi: ABI. (line 50)
* show debug: Debugging Output. (line 8)
* show debug-file-directory: Separate Debug Files.
(line 51)
* show directories: Source Path. (line 64)
* show editing: Editing. (line 22)
* show environment: Environment. (line 33)
* show gnutarget: Target Commands. (line 40)
* show height: Screen Size. (line 21)
* show history: History. (line 60)
* show host-charset: Character Sets. (line 56)
* show input-radix: Numbers. (line 32)
* show language: Show. (line 9)
* show listsize: List. (line 36)
* show logging: Logging output. (line 26)
* show machine: Renesas Special. (line 8)
* show max-user-call-depth: Define. (line 70)
* show mipsfpu: MIPS Embedded. (line 68)
* show new-console: Cygwin Native. (line 35)
* show new-group: Cygwin Native. (line 44)
* show opaque-type-resolution: Symbols. (line 218)
* show os: KOD. (line 17)
* show osabi: ABI. (line 11)
* show output-radix: Numbers. (line 35)
* show paths: Environment. (line 29)
* show print: Print Settings. (line 39)
* show processor: MIPS Embedded. (line 57)
* show prompt: Prompt. (line 19)
* show remote system-call-allowed: The system call. (line 26)
* show remotedebug, MIPS protocol: MIPS Embedded. (line 89)
* show retransmit-timeout: MIPS Embedded. (line 99)
* show rstack_high_address: A29K. (line 17)
* show shell: Cygwin Native. (line 67)
* show solib-absolute-prefix: Files. (line 381)
* show solib-search-path: Files. (line 394)
* show symbol-reloading: Symbols. (line 200)
* show target-charset: Character Sets. (line 59)
* show timeout: MIPS Embedded. (line 99)
* show user: Define. (line 64)
* show values: Value History. (line 47)
* show verbose: Messages/Warnings. (line 21)
* show version: Help. (line 127)
* show warranty: Help. (line 140)
* show width: Screen Size. (line 21)
* show write: Patching. (line 26)
* show-all-if-ambiguous: Readline Init File Syntax.
(line 153)
* shows: History. (line 68)
* si (stepi): Continuing and Stepping.
(line 186)
* signal <1>: Annotations for Running.
(line 42)
* signal: Signaling. (line 6)
* signal-name: Annotations for Running.
(line 22)
* signal-name-end: Annotations for Running.
(line 22)
* signal-string: Annotations for Running.
(line 22)
* signal-string-end: Annotations for Running.
(line 22)
* signalled: Annotations for Running.
(line 22)
* signals: Signals. (line 6)
* silent: Break Commands. (line 38)
* sim: Z8000. (line 15)
* simulator, Z8000: Z8000. (line 6)
* size of screen: Screen Size. (line 6)
* software watchpoints: Set Watchpoints. (line 6)
* source <1>: Source Annotations. (line 6)
* source: Command Files. (line 43)
* source line and its code address: Machine Code. (line 6)
* source path: Source Path. (line 6)
* Sparc: remote stub. (line 66)
* sparc-stub.c: remote stub. (line 66)
* sparcl-stub.c: remote stub. (line 69)
* Sparclet: Sparclet. (line 6)
* SparcLite: remote stub. (line 69)
* speed: Renesas Boards. (line 11)
* spr: OpenRISC 1000. (line 33)
* ST2000 auxiliary commands: ST2000. (line 26)
* st2000 CMD: ST2000. (line 30)
* stack frame: Frames. (line 6)
* stack on Alpha: MIPS. (line 6)
* stack on MIPS: MIPS. (line 6)
* stack traces: Backtrace. (line 6)
* stacking targets: Active Targets. (line 6)
* start: Starting. (line 70)
* start a new trace experiment: Starting and Stopping Trace Experiment.
(line 6)
* start-kbd-macro (C-x (): Keyboard Macros. (line 6)
* starting <1>: Annotations for Running.
(line 6)
* starting: Starting. (line 6)
* stat, file-i/o system call: stat/fstat. (line 6)
* static members of C++ objects: Print Settings. (line 266)
* status of trace data collection: Starting and Stopping Trace Experiment.
(line 20)
* status output in GDB/MI: GDB/MI Output Syntax.
(line 92)
* STDBUG commands (ST2000): ST2000. (line 30)
* step: Continuing and Stepping.
(line 46)
* stepi: Continuing and Stepping.
(line 186)
* stepping: Continuing and Stepping.
(line 6)
* stepping into functions with no line info: Continuing and Stepping.
(line 93)
* stop a running trace experiment: Starting and Stopping Trace Experiment.
(line 12)
* stop on C++ exceptions: Set Catchpoints. (line 13)
* stop reply packets: Stop Reply Packets. (line 6)
* stop, a pseudo-command: Hooks. (line 20)
* stopped threads: Thread Stops. (line 31)
* stopping: Annotations for Running.
(line 6)
* stream records in GDB/MI: GDB/MI Stream Records.
(line 6)
* struct stat, in file-i/o protocol: struct stat. (line 6)
* struct timeval, in file-i/o protocol: struct timeval. (line 6)
* stub example, remote debugging: remote stub. (line 6)
* stupid questions: Messages/Warnings. (line 50)
* switching threads: Threads. (line 6)
* switching threads automatically: Threads. (line 145)
* symbol decoding style, C++: Print Settings. (line 220)
* symbol dump: Symbols. (line 221)
* symbol from address: Symbols. (line 37)
* symbol names: Symbols. (line 14)
* symbol overloading: Breakpoint Menus. (line 6)
* symbol table: Files. (line 6)
* symbol tables, listing GDB's internal: Symbols. (line 240)
* symbol-file: Files. (line 43)
* symbols, reading from relocatable object files: Files. (line 152)
* symbols, reading immediately: Files. (line 89)
* sysinfo: DJGPP Native. (line 19)
* system call, file-i/o protocol: The system call. (line 6)
* system calls and thread breakpoints: Thread Stops. (line 36)
* system, file-i/o system call: system. (line 6)
* T packet: Packets. (line 282)
* t packet: Packets. (line 277)
* T packet reply: Stop Reply Packets. (line 16)
* target <1>: Target Commands. (line 49)
* target: Targets. (line 6)
* target abug: M68K. (line 9)
* target array: MIPS Embedded. (line 49)
* target byte order: Byte Order. (line 6)
* target character set: Character Sets. (line 6)
* target cpu32bug: M68K. (line 12)
* target dbug: M68K. (line 15)
* target ddb PORT: MIPS Embedded. (line 41)
* target debugging info: Debugging Output. (line 67)
* target dink32: PowerPC. (line 6)
* target e7000, with H8/300: H8/300. (line 11)
* target e7000, with Renesas ICE: Renesas ICE. (line 6)
* target e7000, with Renesas SH: SH. (line 11)
* target est: M68K. (line 18)
* target hms, and serial protocol: Renesas Boards. (line 48)
* target hms, with H8/300: H8/300. (line 6)
* target hms, with Renesas SH: SH. (line 6)
* target jtag: OpenRISC 1000. (line 9)
* target lsi PORT: MIPS Embedded. (line 44)
* target m32r: M32R/D. (line 6)
* target m32rsdi: M32R/D. (line 9)
* target mips PORT: MIPS Embedded. (line 14)
* target op50n: PA. (line 6)
* target output in GDB/MI: GDB/MI Output Syntax.
(line 108)
* target pmon PORT: MIPS Embedded. (line 38)
* target ppcbug: PowerPC. (line 9)
* target ppcbug1: PowerPC. (line 10)
* target r3900: MIPS Embedded. (line 46)
* target rdi: ARM. (line 6)
* target rdp: ARM. (line 11)
* target rom68k: M68K. (line 21)
* target rombug: M68K. (line 25)
* target sds: PowerPC. (line 14)
* target sh3, with H8/300: H8/300. (line 14)
* target sh3, with SH: SH. (line 14)
* target sh3e, with H8/300: H8/300. (line 14)
* target sh3e, with SH: SH. (line 14)
* target sim, with Z8000: Z8000. (line 15)
* target sparclite: Sparclite. (line 6)
* target vxworks: VxWorks. (line 6)
* target w89k: PA. (line 9)
* tbreak: Set Breaks. (line 74)
* TCP port, target remote: Connecting. (line 23)
* tdump: tdump. (line 6)
* terminal: Input/Output. (line 6)
* Text User Interface: TUI. (line 6)
* tfind: tfind. (line 6)
* thbreak: Set Breaks. (line 99)
* this, inside C++ member functions: C plus plus expressions.
(line 22)
* thread breakpoints: Thread Stops. (line 10)
* thread breakpoints and system calls: Thread Stops. (line 36)
* thread identifier (GDB): Threads. (line 56)
* thread identifier (GDB), on HP-UX: Threads. (line 82)
* thread identifier (system): Threads. (line 44)
* thread identifier (system), on HP-UX: Threads. (line 86)
* thread number: Threads. (line 56)
* thread THREADNO: Threads. (line 122)
* threads and watchpoints: Set Watchpoints. (line 105)
* threads of execution: Threads. (line 6)
* threads, automatic switching: Threads. (line 145)
* threads, continuing: Thread Stops. (line 69)
* threads, stopped: Thread Stops. (line 31)
* timeout, MIPS protocol: MIPS Embedded. (line 99)
* trace: Create and Delete Tracepoints.
(line 6)
* trace experiment, status of: Starting and Stopping Trace Experiment.
(line 20)
* tracebacks: Backtrace. (line 6)
* tracepoint actions: Tracepoint Actions. (line 6)
* tracepoint data, display: tdump. (line 6)
* tracepoint deletion: Create and Delete Tracepoints.
(line 34)
* tracepoint number: Create and Delete Tracepoints.
(line 31)
* tracepoint pass count: Tracepoint Passcounts.
(line 6)
* tracepoint variables: Tracepoint Variables.
(line 6)
* tracepoints: Tracepoints. (line 6)
* translating between character sets: Character Sets. (line 6)
* transpose-chars (C-t): Commands For Text. (line 30)
* transpose-words (M-t): Commands For Text. (line 36)
* tstart: Starting and Stopping Trace Experiment.
(line 6)
* tstatus: Starting and Stopping Trace Experiment.
(line 20)
* tstop: Starting and Stopping Trace Experiment.
(line 12)
* tty: Input/Output. (line 23)
* TUI: TUI. (line 6)
* TUI commands: TUI Commands. (line 6)
* TUI configuration variables: TUI Configuration. (line 6)
* TUI key bindings: TUI Keys. (line 6)
* tui reg: TUI Commands. (line 42)
* TUI single key mode: TUI Single Key Mode. (line 6)
* type casting memory: Expressions. (line 42)
* type checking: Checks. (line 31)
* type conversions in C++: C plus plus expressions.
(line 27)
* u (SingleKey TUI key): TUI Single Key Mode. (line 31)
* u (until): Continuing and Stepping.
(line 113)
* UDP port, target remote: Connecting. (line 37)
* undisplay: Auto Display. (line 46)
* undo (C-_ or C-x C-u): Miscellaneous Commands.
(line 22)
* unions in structures, printing: Print Settings. (line 164)
* universal-argument (): Numeric Arguments. (line 10)
* unix-line-discard (C-u): Commands For Killing.
(line 12)
* unix-word-rubout (C-w): Commands For Killing.
(line 28)
* unknown address, locating: Output Formats. (line 35)
* unlink, file-i/o system call: unlink. (line 6)
* unmap an overlay: Overlay Commands. (line 39)
* unmapped overlays: How Overlays Work. (line 6)
* unset environment: Environment. (line 55)
* unsupported languages: Unsupported languages.
(line 6)
* until: Continuing and Stepping.
(line 113)
* Up: TUI Keys. (line 57)
* up: Selection. (line 35)
* up-silently: Selection. (line 64)
* upcase-word (M-u): Commands For Text. (line 41)
* update: TUI Commands. (line 57)
* user-defined command: Define. (line 6)
* user-defined macros: Macros. (line 54)
* v (SingleKey TUI key): TUI Single Key Mode. (line 34)
* value history: Value History. (line 6)
* variable name conflict: Variables. (line 36)
* variable object debugging info: Debugging Output. (line 78)
* variable objects in GDB/MI: GDB/MI Variable Objects.
(line 41)
* variable values, wrong: Variables. (line 58)
* variables, readline: Readline Init File Syntax.
(line 30)
* variables, setting: Assignment. (line 16)
* vCont packet: Packets. (line 302)
* vCont? packet: Packets. (line 328)
* vector unit: Vector Unit. (line 6)
* vector, auxiliary: Auxiliary Vector. (line 6)
* version number: Help. (line 127)
* visible-stats: Readline Init File Syntax.
(line 159)
* VxWorks: VxWorks. (line 6)
* vxworks-timeout: VxWorks. (line 23)
* w (SingleKey TUI key): TUI Single Key Mode. (line 37)
* watch: Set Watchpoints. (line 21)
* watchpoint: Annotations for Running.
(line 50)
* watchpoints: Breakpoints. (line 21)
* watchpoints and threads: Set Watchpoints. (line 105)
* whatis: Symbols. (line 49)
* where: Backtrace. (line 27)
* while: Define. (line 41)
* while-stepping (tracepoints): Tracepoint Actions. (line 67)
* wild pointer, interpreting: Print Settings. (line 79)
* winheight: TUI Commands. (line 61)
* word completion: Completion. (line 6)
* working directory: Source Path. (line 53)
* working directory (of your program): Working Directory. (line 6)
* working language: Languages. (line 13)
* write, file-i/o system call: write. (line 6)
* writing into corefiles: Patching. (line 6)
* writing into executables: Patching. (line 6)
* wrong values: Variables. (line 58)
* x (examine memory): Memory. (line 9)
* x command, default address: Machine Code. (line 30)
* X packet: Packets. (line 351)
* x(examine), and info line: Machine Code. (line 30)
* yank (C-y): Commands For Killing.
(line 54)
* yank-last-arg (M-. or M-_): Commands For History.
(line 62)
* yank-nth-arg (M-C-y): Commands For History.
(line 55)
* yank-pop (M-y): Commands For Killing.
(line 57)
* yanking text: Readline Killing Commands.
(line 6)
* z packet: Packets. (line 369)
* Z packets: Packets. (line 369)
* Z0 packet: Packets. (line 385)
* z0 packet: Packets. (line 385)
* Z1 packet: Packets. (line 412)
* z1 packet: Packets. (line 412)
* Z2 packet: Packets. (line 434)
* z2 packet: Packets. (line 434)
* Z3 packet: Packets. (line 449)
* z3 packet: Packets. (line 449)
* Z4 packet: Packets. (line 464)
* z4 packet: Packets. (line 464)
* Z8000: Z8000. (line 6)
* Zilog Z8000 simulator: Z8000. (line 6)
* {TYPE}: Expressions. (line 42)
|